

Chapter 5A: Ethernet

Introduction to Networks

© 2008 Cisco Systems, Inc. All rights reserved

Chapter 5: Objectives

Upon completion of this chapter, you will be able to:

- Describe the operation of the Ethernet sublayers.
- Identify the major fields of the Ethernet frame.
- Describe the purpose and characteristics of the Ethernet MAC address.
- Describe the purpose of ARP.
- Explain how ARP requests impact network and host performance.
- Explain basic switching concepts.
- Compare fixed configuration and modular switches.
- Configure a Layer 3 switch.

Chapter 5

- 5.0 Introduction
- 5.1 Ethernet Protocol
- 5.2 Address Resolution Protocol
- 5.3 LAN Switches
- 5.4 Summary

Ethernet Protocol

Ethernet Protocol

What is Ethernet?

- It is one of the most widely used LAN technologies
- It operates in the data link layer and the physical layer
- It is part of family of networking technologies that are defined in the IEEE 802.2 and 802.3 standards
- It supports data bandwidths of 10, 100, 1000, 10,000, 40,000, and 100,000 Mbps (100 Gbps)

Ethernet Protocol

Ethernet Standards

- Layer 2 protocols and Layer 1 technologies are defined by Ethernet Standards
- Two separate sub-layers of the data link layer to operate Logical link control (LLC) and the MAC sublayers

Etherno	ət	Data Link	LLC	802.2	1
Application			MAC		STUCONICT
Presentation		Physical		802.3	ETHERNET
Session		c injunior			
Transport	Ethemet is defined by da link layer and physical lay	a F			
Network	protocois.				
Data Link LLC MAC	802.2 Ethernet				
Physical	802.3				

Ethernet Operation LLC and MAC Sublayers

LLC

- Handles communication between upper and lower layers.
- Takes the network protocol data and adds control information to help deliver the packet to the destination.

MAC

- Constitutes the lower sub-layer of the data link layer.
- Implemented by hardware, typically in the computer NIC.
- Two primary responsibilities:
 - Data encapsulation
 - Media access control

Ethernet Operation MAC Sublayer

Data Encapsulation

- Frame delimiting
- Addressing
- Error detection

Media Access Control

- Control of frame placement on and off the media
- Media recovery

Ethernet Operation MAC Sublayer

Data encapsulation takes place in the MAC sublayer

- Data are sent using ethernet frames
- Frames are assembled before transmission
- Frames disassembled upon reception of a frame
- MAC layer adds a header and trailer to the network layer PDU.

Ethernet Operation MAC Sublayer

MAC Sublayer provides three primary functions:

- Frame delimiting Identifies a group of bits that make up a frame, synchronization between the transmitting and receiving nodes.
- Addressing Each Ethernet header added in the frame contains the physical address (MAC address) that enables a frame to be delivered to a destination node.
- Error detection Each Ethernet frame contains a trailer with a cyclic redundancy check (CRC) of the frame contents.

Ethernet Operation MAC Sub-layer

The Ethernet MAC sub-layer,

- Is responsible for the placement of frames on the media and the removal of frames from the media
- Communicates directly with the physical layer
- provides a method for controlling how the nodes share access through the use a Carrier Sense Multiple Access (CSMA) technology

(Note : If multiple devices on a single medium attempt to forward data simultaneously, the data will collide resulting in corrupted, unusable data; this needs to be prevented)

Ethernet Operation MAC - CSMA

Carrier Sense Multiple Access (CSMA) process

- Used to first detect if the media is carrying a signal
- If no carrier signal is detected, the device transmits its data
- If two devices transmit at the same time data collision takes place

Ethernet Operation MAC - CSMA

CSMA is usually implemented in conjunction with a method for resolving media contention.

The two commonly used methods are:

- CSMA/Collision Detection and
- CSMA/Collision Avoidance

Ethernet Operation MAC – CSMA/CD

CSMA/Collision Detection (CSMA/CD) Method

- The device monitors the media for the presence of a data signal
- If a data signal is absent, the device transmits the data
- If signals are then detected that show another device was transmitting at the same time, all devices stop sending & try again later

While Ethernet networks are designed with CSMA/CD technology, with today's intermediate devices, collisions do not occur and the processes utilized by CSMA/CD are really unnecessary

Wireless connections in a LAN environment still have to take collisions into account

Ethernet Operation MAC - CSMA

Ethernet Operation Media Access Control

CSMA/Collision Avoidance (CSMA/CA) Method

The process used in this method is:

- Network device examines the media for the presence of data signal
- If the media is free, the device sends a notification across the media of its intent to use it
- The device then sends the data.

This method is used by 802.11 wireless networking technologies

Ethernet Operation MAC Address: Ethernet Identity

- Layer 2 Ethernet MAC address is a 48-bit binary value expressed as 12 hexadecimal digits.
- IEEE requires a vendor to follow these rules:
 - Must use that vendor's assigned
 OUI as the first 3 bytes.
 - All MAC addresses with the same OUI must be assigned a unique value in the last 3 bytes.

* OUI – Organizationally Unique Identifier

Ethernet Operation MAC - Frame Processing

- workstations, servers, printers, switches, and routers all have MAC addresses assigned to them.
- Example MAC addresses:
 - 00-05-9A-3C-78-00
 - 00:05:9A:3C:78:00
 - 0005.9A3C.7800.
- When a device is forwarding a message to an Ethernet network, attached header information to the packet contains the source and destination MAC address.

Ethernet II							
8	6	6	2	46 to 1500	4		
Preamble	Destination Address MAC	Source Address MAC	Туре	Data	Frame Check Sequence		

Ethernet Operation MAC - Frame Processing

- Each NIC views information to see if the destination MAC address in the frame matches the device's physical MAC address stored in RAM.
- If there is no match found, the device discards the frame.
- If a match for the destination MAC of the frame is found, the NIC passes the frame up the OSI layers, where the de-encapsulation process takes place.

* NIC – Network Interface Card

Ethernet Encapsulation

- Early versions of Ethernet were slow at 10 Mb/s.
- Now (2016) operates at 10 Gb/s and faster.
- Ethernet frame structure adds headers and trailers around the Layer 3 PDU to encapsulate the message being sent.
- Ethernet II is the Ethernet frame format used in TCP/IP networks.

Comparison of 802.3 and Ethernet II Frame Structures and Field Size										
IEEE 802.	3						ĩ			
7 1 6 6 2 46 to 1500 4										
Preamble	Start of Frame Delimiter	Destination Address	Source Address	Length	802.2 Header and Data	Frame Check Sequence				
Ethernet II										
8	6	6	6	6	2		46 to 1500	4		
Preamble	Destination Address	Source Address	Туре		Data	Frame Check Sequence				

Ethernet Frame fields

Each field of the ethernet frame contains some information needed for the delivery of the frame.

Ethernet Frame Size

4 Bytes added to the Ethernet frame allows QoS and VLAN technologies to be implemented

Ethernet Frame Size

- Ethernet II and IEEE 802.3 standards define the minimum frame size as 64 bytes and the maximum as 1518 bytes
- Less than 64 bytes in length is considered a "collision fragment" or "runt frame"
- If size of a transmitted frame is outside the 64 1518 bytes range, the receiving device drops the frame
- At the physical layer, different versions of Ethernet vary in their method for detecting and placing data on the media

Ethernet MAC MAC Addresses and Hexadecimal

MAC addresses are usually stated in Hexadecimal.

Decimal and Binary equivalents of 0 to F Hexadecimal							
Decimal	Binary	Hexadecimal					
0	0000	0					
1	0001	1					
2	0010	2					
3	0011	3					
4	0100	4					
5	0101	5					
6	0110	6					
7	0111	7					
8	1000	8					
9	1001	9					
10	1010	Α					
11	1011	В					
12	1100	С					
13	1101	D					
14	1110	E					
15	1111	F					

Selected Decimal, Binary and Hexadecimal equivalents								
Decimal	Binary	Hexadecimal						
0	0000 0000	00						
1	0000 0001	01						
2	0000 0010	02						
3	0000 0011	03						
4	0000 0100	04						
5	0000 0101	05						
6	0000 0110	06						
7	0000 0111	07						
8	0000 1000	08						
10	0000 1010	0A						
15	0000 1111	0F						
16	0001 0000	10						
32	0010 0000	20						
64	0100 0000	40						
128	1000 0000	80						
192	1100 0000	C0						
202	1100 1010	CA						
240	1111 0000	F0						
255	1111 1111	FF						

Ethernet MAC MAC Address Representations

There are 3 ways of representing MAC addresses:

DASHES	00-60-2F-3A-07-BC
COLON	00:60:2F:3A:07:BC
PERIOD	0060.2F3A.07BC

/all

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix		;	example.com
Description	•	÷.	Intel(R) Gigsbit Network Connection
Physical Address		\$	00-18-DE-C7-F3-F8
DHCP Enabled		;	Yea
Autoconfiguration Enabled		;	Yes
IPv4 Address		;	192.168.1.67(Preferred)
Submet Mask		;	255.255.255.0
Lesse Obtained		÷	Monday, November 26, 2012 12:14:48 PM
Lease Expires		;	Saturday, December 01, 2012 12:15:02 AM
Default Gateway		;	192,168.1.254
EHCP Server		:	192.168.1.254
DNS Servers		:	192.168.1.254

Ethernet MAC Ethernet Frame information

Information stored in an ethernet frame depends on the delivery option,

- Unicast
- Multicast
- Broadcase

Ethernet MAC Unicast

A Unicast frame contains one MAC adress. The frame will be sent to the device that has the destination MAC address stored in the frame.

Ethernet MAC Broadcast

For broadcasting, the frame has the destination MAC and destination IP.

Ethernet MAC Multicast

The Multicast frame contains destination MAC, source IP, destination IP and User Data.

Multicast MAC address is a special value that begins with 01-00-5E in hexadecimal

Range of IPV4 multicast addresses is 224.0.0.0 to 239.255.255.255

MAC and IP MAC and IP addresses

MAC Address

- This address does not change (fixed for a device)
- Similar to the name of a person
- Known as physical address because physically assigned to the host NIC (Network Interface Card)

IP Address

- This address is not fixed for a device
- Similar to the address of a person
- Based on where the host is actually located
- Known as a logical address because assigned logically
- Assigned to each host by a network administrator

Both the physical MAC and logical IP addresses are required for a computer to communicate, just like both the name and address of a person are required to send a letter.

Ethernet MAC End-to-End Connectivity, MAC, and IP

A switch reads the MAC addresses of the ethernet frame, and sends the frame to the destination.

A router reads the IP addresses of the ethernet frame, and send the frame to the destination IP address.

Ţ							
	Destination MAC Address BB:BB:BB:BB:BB:BB	Source MAC Address AA:AA:AA:AA:AA:AA	Source IP Address 10.0.0.1	Destination IP Address 192.168.1.5	Data	Trailer	
A SWITCH READS THE MAC ADDRESSES A ROUTER READS THE IP ADDRESS STORED IN THE FRAME STORED IN THE FRAME							SSES

Ethernet MAC End-to-End Connectivity, MAC, and IP

9.f

Review

1. What is Ethernet?

- It is one of the most widely used ______ technologies
- It operates in the _____layer and the _____ layer

Review

1. What is Ethernet?

- It is one of the most widely used <u>LAN</u> technologies
- It operates in the <u>data link</u> layer and the <u>physical</u> layer
- It is part of family of networking technologies that are defined in the IEEE 802.2 and 802.3 standards
- It supports data bandwidths of 10, 100, 1000, 10,000, 40,000, and 100,000 Mbps (100 Gbps)

Review

2. Ethernet operates at the sub-layers of the data link layer ____(LLC) and the _____ sublayers

- 2. Ethernet operates at the sub-layers of the data link layer
- Logical link control (LLC) and the MAC sublayers

3. The LLC sublayer handles ______ between upper and lower layers.

It takes the network protocol data and ______to help deliver the packet to the destination.

3. The LLC sublayer handles communication between upper and lower layers.

It takes the network protocol data and adds control information to help deliver the packet to the destination.

4. The MAC sublayer constitutes the lower sub-layer of the data link layer.

It is implemented by _____, typically in the computer NIC.

Its two primary responsibilities are data ______ and

Media _____.

4. The MAC sublayer constitutes the lower sub-layer of the data link layer.

It is implemented by hardware, typically in the computer NIC.

Its two primary responsibilities are data encapsulation and

Media access control

5. Data encapsulation takes place in the MAC sublayer

- Data are sent using ______ frames
- Frames are _____ before transmission
- Frames ______ upon reception of a frame
- MAC layer adds a header and _____ to the network layer PDU.

5. Data encapsulation takes place in the MAC sublayer

- Data are sent using <u>ethernet</u> frames
- Frames are assembled before transmission
- Frames disassembled upon reception of a frame
- MAC layer adds a header and trailer to the network layer PDU.

6. The MAC Sublayer provides three primary functions:

- Frame _____ Identifies a group of bits that make up a frame, synchronization between the transmitting and receiving nodes.
- Each Ethernet header added in the frame contains the physical address (MAC address) that enables a frame to be delivered to a destination node.
- Error _____ Each Ethernet frame contains a trailer with a cyclic redundancy check (CRC) of the frame contents.

6. The MAC Sublayer provides three primary functions:

- Frame delimiting Identifies a group of bits that make up a frame, synchronization between the transmitting and receiving nodes.
- Addressing Each Ethernet header added in the frame contains the physical address (MAC address) that enables a frame to be delivered to a destination node.
- Error detection Each Ethernet frame contains a trailer with a cyclic redundancy check (CRC) of the frame contents.

7. The Ethernet MAC sub-layer is responsible for the

_____ of frames on the media, and the removal of frames from the media.

It communicates directly with the _____ layer

It provides a method for controlling how the nodes share access through the use a _____(CSMA) technology

7. The Ethernet MAC sub-layer is responsible for the placement of frames on the media, and the removal of frames from the media.

It communicates directly with the physical layer

It provides a method for controlling how the nodes share access through the use a Carrier Sense Multiple Access (CSMA) technology

8. The Carrier Sense Multiple Access (CSMA) process

- It first detects if the media is carrying a signal
- If no carrier signal is detected, the device transmits its data
- If two devices transmit at the same time data collision takes place

8. The Carrier Sense Multiple Access (CSMA) process

- It first detects if the media is carrying a _____
- If no carrier signal is detected, the device transmits its _____
- If two devices transmit at the same time data collision takes place

9. CSMA is usually implemented in conjunction with a method for resolving media contention.

The two commonly used methods are:

- CSMA/_____ and
- CSMA/_____

9. CSMA is usually implemented in conjunction with a method for resolving media contention.

The two commonly used methods are:

- CSMA/Collision Detection and
- CSMA/Collision Avoidance

10. CSMA/Collision Detection (CSMA/CD) Method

- The device monitors the media for the _____ of a data signal
- If a data signal is _____, the device transmits the data
- If signals are detected, all devices stop sending & try again later

10. CSMA/Collision Detection (CSMA/CD) Method

- The device monitors the media for the presence of a data signal
- If a data signal is absent, the device transmits the data
- If signals are detected all devices stop sending & try again later

11. CSMA/Collision Avoidance (CSMA/CA) Method

The process used in this method is:

- Network device examines the media for the presence of data signal
- If the media is free, the device sends a ______ across the media of its intent to use it
- The device then _____ the data.

11. CSMA/Collision Avoidance (CSMA/CA) Method

The process used in this method is:

- Network device examines the media for the presence of data signal
- If the media is free, the device sends a <u>notification</u> across the media of its intent to use it
- The device then <u>sends</u> the data.

12. The Layer 2 Ethernet MAC address is a _____ binary value expressed as 12 hexadecimal digits.

- IEEE requires a vendor to assign OUI as the first 3 bytes.
- All MAC addresses with the same must be assigned a unique value in the last 3 bytes.

* OUI – Organizationally Unique Identifier

12. The Layer 2 Ethernet MAC address is a <u>48-bit</u> binary value expressed as 12 hexadecimal digits.

- IEEE requires a vendor to assign OUI as the first 3 bytes.
- All MAC addresses with the same OUI must be assigned a unique value in the last 3 bytes.

* OUI – Organizationally Unique Identifier

12. workstations, servers, printers, switches, and routers all have _____ addresses assigned to them.

- Example _____ addresses:
 - 00-05-9A-3C-78-00
 - 00:05:9A:3C:78:00
 - 0005.9A3C.7800.

When a device is forwarding a message to an Ethernet network, attached header information to the packet contains the _____ and _____ MAC address.

12. workstations, servers, printers, switches, and routers all have <u>MAC</u> addresses assigned to them.

- Example <u>MAC</u> addresses:
 - 00-05-9A-3C-78-00
 - 00:05:9A:3C:78:00
 - 0005.9A3C.7800.

When a device is forwarding a message to an Ethernet network, attached header information to the packet contains the <u>source and destination MAC</u> address.

Ethernet II					
8	6	6	2	46 to 1500	4
Preamble	Destination Address MAC	Source Address MAC	Туре	Data	Frame Check Sequence

13. Each NIC views information to see if the _____ MAC address in the frame matches the device's _____ MAC address stored in RAM.

If there is no match found, the device ______ the frame.

If a match for the destination MAC of the frame is found, the NIC passes the frame up the OSI layers, where the ______ process takes place.

* NIC – Network Interface Card

13. Each NIC views information to see if the destination MAC address in the frame matches the device's physical MAC address stored in RAM.

If there is no match found, the device discards the frame.

If a match for the destination MAC of the frame is found, the NIC passes the frame up the OSI layers, where the de-encapsulation process takes place.

* NIC – Network Interface Card

14.

____Bytes are added to the Ethernet frame to allow QoS and _____technologies to be implemented

14.

4 Bytes are added to the Ethernet frame to allow QoS and VLAN technologies to be implemented

15. Ethernet II and IEEE 802.3 standards define the minimum frame size as _____ bytes and the maximum as _____ bytes

A frame of less than 64 bytes in length is considered a "collision fragment" or "_____ frame"

If size of a transmitted frame is outside the 64 - 1518 bytes range, the receiving device _____ the frame

15. Ethernet II and IEEE 802.3 standards define the minimum frame size as 64 bytes and the maximum as 1518 bytes

A frame of less than 64 bytes in length is considered a "collision fragment" or "runt frame"

If size of a transmitted frame is outside the 64 - 1518 bytes range, the receiving device drops the frame

16. There are 3 ways of representing MAC addresses: Using dashes Using _____ Using _____

16. There are 3 ways of representing MAC addresses: Using dashes Using colons Using periods

DASHES	00-60-2F-3A-07-BC		
COLON	00:60:2F:3A:07:BC		
PERIOD	0060.2F3A.07BC		

17. Information stored in an ethernet frame depends on the delivery option,

- •
- Multicast
- •

17. Information stored in an ethernet frame depends on the delivery option,

- Unicast
- Multicast
- Broadcast

A Unicast frame contains one _____. The frame will be sent to the device that has the destination MAC address stored in the frame.

A Unicast frame contains one <u>MAC adress</u>. The frame will be sent to the device that has the destination MAC address stored in the frame.

19. For broadcasting, the frame has the destination _____ and destination _____.

19. For broadcasting, the frame has the destination \underline{MAC} and destination \underline{IP} .

20. The Multicast frame contains destination MAC, _____ IP, destination IP and _____ Data.

20. The Multicast frame contains destination MAC, <u>source</u> IP, destination IP and <u>User</u> Data.

Multicast MAC address is a special value that begins with 01-00-5E in hexadecimal

Range of IPV4 multicast addresses is 224.0.0.0 to 239.255.255.255

21. MAC Address

- This address ______
- Similar to the name of a person
- Known as _____ address.

21. MAC Address

- This address does not change (fixed for a device)
- Similar to the name of a person
- Known as physical address because physically assigned to the host NIC (Network Interface Card)

22. IP Address

- This address is not _____ for a device
- Similar to the address of a person
- Based on where the host is actually located
- Known as a _____ address because assigned logically
- Assigned to each host by a network administrator

22. IP Address

- This address is not fixed for a device
- Similar to the address of a person
- Based on where the host is actually located
- Known as a logical address because assigned logically
- Assigned to each host by a network administrator

23.

Both the physical MAC and logical IP addresses are required for a computer to ______, just like both the name and address of a person are required to send a letter.

23.

Both the physical MAC and logical IP addresses are required for a computer to communicate, just like both the name and address of a person are required to send a letter.

A switch reads the _____ addresses of the ethernet frame, and sends the frame to the destination.

A router reads the <u>addresses</u> of the ethernet frame, and send the frame to the destination IP address.

A switch reads the <u>MAC</u> addresses of the ethernet frame, and sends the frame to the destination.

A router reads the <u>IP</u> addresses of the ethernet frame, and send the frame to the destination IP address.

T							
	Destination MAC Address BB:BB:BB:BB:BB:BB	Source MAC Address AA:AA:AA:AA:AA:AA	Source IP Address 10.0.0.1	Destination IP Address 192.168.1.5	Data	Trailer	
A SWITCH READS THE MAC ADDRESSES STORED IN THE FRAME			A ROUTER READS THE IP ADDRESSES STORED IN THE FRAME				

THE END

10. T