# Chapter 8 IP Addressing

- 8.0 Introduction
- 8.1 IPv4 Network Addresses
- 8.2 IPv6 Network Addresses
- 8.3 Connectivity Verification

## IPv4 Address Structure Binary Notation

Computers communicate in 1s and 0s Numbering System used is Binary

- 1 represents a voltage
- 0 represent no voltage



#### IPv4 Address Structure

## **Binary Number System**





IPv4 Address Structure

# Converting a Binary Address to Decimal

Practice

| 27  | 2 <sup>6</sup> | 2 <sup>5</sup> | 24 | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|-----|----------------|----------------|----|----------------|----------------|----------------|----------------|
| 128 | 64             | 32             | 16 | 8              | 4              | 2              | 1              |
| 1   | 0              | 1              | 1  | 0              | 0              | 0              | 0              |

| 27  | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 128 | 64             | 32             | 16             | 8              | 4              | 2              | 1              |
| 1   | 1              | 1              | 1              | 1              | 1              | 1              | 1              |

IPv4 Address Structure

# Converting a Binary Address to Decimal

#### Practice

| 27  | 2 <sup>6</sup> | 2⁵ | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|-----|----------------|----|----------------|----------------|----------------|----------------|----------------|
| 128 | 64             | 32 | 16             | 8              | 4              | 2              | 1              |
| 1   | 0              | 1  | 1              | 0              | 0              | 0              | 0              |

Answer = 176

| 27  | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 128 | 64             | 32             | 16             | 8              | 4              | 2              | 1              |
| 1   | 1              | 1              | 1              | 1              | 1              | 1              | 1              |

Answer = 255

### Converting a Binary Address IP to Decimal



### IPv4 Address Structure Converting from Decimal to Binary



### IPv4 Address Structure Converting from Decimal to Binary



### **Network Portion and Host Portion**

- A 32-bit IPv4 address has 32 bits.
- An address consists of a Network address and a Host address.
- To define the network and host portions of an address, devices use a separate 32-bit pattern called a subnet mask.
- A Subnet mask is a 32-bit number that masks an IP address, and divides the IP address into network address and host address.

### **Network Portion and Host Portion**



The IPv4 Subnet Mask has 8 bits, and take any of these 8 values.

|        | Bit \ | /alue | 1  |    |   |   |   |   |
|--------|-------|-------|----|----|---|---|---|---|
| Subnet |       | raiue |    |    |   |   |   |   |
| value  | 128   | 64    | 32 | 16 | 8 | 4 | 2 | 1 |
| 255    | 1     | 1     | 1  | 1  | 1 | 1 | 1 | 1 |
| 254    | 1     | 1     | 1  | 1  | 1 | 1 | 1 | 0 |
| 252    | 1     | 1     | 1  | 1  | 1 | 1 | 0 | 0 |
| 248    | 1     | 1     | 1  | 1  | 1 | 0 | 0 | 0 |
| 240    | 1     | 1     | 1  | 1  | 0 | 0 | 0 | 0 |
| 224    | 1     | 1     | 1  | 0  | 0 | 0 | 0 | 0 |
| 192    | 1     | 1     | 0  | 0  | 0 | 0 | 0 | 0 |
| 128    | 1     | 0     | 0  | 0  | 0 | 0 | 0 | 0 |
| 0      | 0     | 0     | 0  | 0  | 0 | 0 | 0 | 0 |

## Calculating Max Number of Hosts

|                          | Dotted Decimal | Significant bits shown<br>in binary |
|--------------------------|----------------|-------------------------------------|
| Network Address          | 10.1.1.0/24    | 10.1.1.00000000                     |
| First Host Address       | 10.1.1.1       | 10.1.1.00000001                     |
| Last Host Address        | 10.1.1.254     | 10.1.1.11111110                     |
| Broadcast Address        | 10.1.1.255     | 10.1.1.11111111                     |
| Number of hosts: 2^8 - 2 | 2 = 254 hosts  |                                     |
|                          |                |                                     |

Number of hosts = 
$$2^{H} - 2$$
  
=  $2^{8} - 2$   
= 256 - 2 = 254

The last two addresses (.254 and .255) are reserved

/24 means 24 bits of 32 bits used for network address, which is 10.1.1 The remaining 8 bits are available for host address (H)

In this network, the maximum number of hosts = 254.

### Calculating Max Number of Hosts

| Network Address                                                  | 10.1.1.(/25                       | 10.1.1.00000000 |  |  |  |  |  |
|------------------------------------------------------------------|-----------------------------------|-----------------|--|--|--|--|--|
| First Host Address                                               | 10.1.1.1                          | 10.1.1.00000001 |  |  |  |  |  |
| Last Host Address                                                | 10.1.1 <mark>.126</mark>          | 10.1.1.01111110 |  |  |  |  |  |
| Broadcast Address                                                | ddress 10.1.1.127 10.1.1.01111111 |                 |  |  |  |  |  |
| Number of hosts: 2^7 - 2                                         | 2 = 126 hosts                     |                 |  |  |  |  |  |
|                                                                  |                                   |                 |  |  |  |  |  |
| 25 bits used for netw                                            | vork address                      |                 |  |  |  |  |  |
| 7 hits left for hosts, thus H=7 ←                                |                                   |                 |  |  |  |  |  |
|                                                                  |                                   |                 |  |  |  |  |  |
| Number of hosts = $2' - 2 = 128 - 2 = 126$                       |                                   |                 |  |  |  |  |  |
| A network that needs more than 126 hosts cannot use this design. |                                   |                 |  |  |  |  |  |

#### IPv4 Subnet Mask

# Calculating Number of Hosts

| Network Address                     | 10.1.1.0/26             | 10.1.1.00000000 |  |  |  |
|-------------------------------------|-------------------------|-----------------|--|--|--|
| First Host Address                  | 10.1.1 <mark>.1</mark>  | 10.1.1.00000001 |  |  |  |
| Last Host Address                   | 10.1.1.62               | 10.1.1.00111110 |  |  |  |
| Broadcast Address                   | 10.1.1 <mark>.63</mark> | 10.1.1.00111111 |  |  |  |
| Number of hosts: 2^6 – 2 = 62 hosts |                         |                 |  |  |  |

Determine the maximum number of hosts for this network. (ans : 62)

|                          | Dotted Decimal          | Significant bits shown<br>in binary |
|--------------------------|-------------------------|-------------------------------------|
| Network Address          | 10.1.1.0/27             | 10.1.1.00000000                     |
| First Host Address       | 10.1.1 <mark>.1</mark>  | 10.1.1.00000001                     |
| Last Host Address        | 10.1.1.30               | 10.1.1.00011110                     |
| Broadcast Address        | 10.1.1 <mark>.31</mark> | 10.1.1.00011111                     |
| Number of hosts: 2^5 - 2 | = 30 hosts              |                                     |

| Network Address                     | 10.1.1.0/28             | 10.1.1.00000000  |  |  |  |
|-------------------------------------|-------------------------|------------------|--|--|--|
| First Host Address                  | 10.1.1 <mark>.1</mark>  | 10.1.1.00000001  |  |  |  |
| Last Host Address                   | 10.1.1 <mark>.14</mark> | 10.1.1.00001110  |  |  |  |
| Broadcast Address                   | 10.1.1 <mark>.15</mark> | 10.1.1.000011111 |  |  |  |
| Number of hosts: 2^4 – 2 = 14 hosts |                         |                  |  |  |  |

IPv4 Subnet Mask

## Network and Router Addresses

# Network 10.1.1.0



### IPv4 Subnet Mask Bitwise AND Operation

| IP Address | AND | Subnet Mask = | Network | address |
|------------|-----|---------------|---------|---------|
|------------|-----|---------------|---------|---------|

| IPv4 Address    | 192      | . 168    | . 10     | . 10     |
|-----------------|----------|----------|----------|----------|
| known           | 11000000 | 10101000 | 00001010 | 00001010 |
| Subnet Mask     | 255      | . 255    | . 255    | . 0      |
| known           | 11111111 | 11111111 | 11111111 | 00000000 |
| Network Address | 192      | . 168    | . 10     | . 0      |
| calculated      | 11000000 | 10101000 | 00001010 | 00000000 |

|   | IPv4 Subnet Mask Bitwise AND Operation |                             |                          |          |   |                          |          |    |                       |   |     |                       |
|---|----------------------------------------|-----------------------------|--------------------------|----------|---|--------------------------|----------|----|-----------------------|---|-----|-----------------------|
|   |                                        |                             | 1 AND 1 = <mark>1</mark> | 1        | Α | ND 0 = <mark>0</mark>    | 04       | 4N | ID 1 = <mark>0</mark> |   | 0 A | ND 0 = <mark>0</mark> |
|   |                                        |                             | 192                      |          |   | 168                      |          |    | 10                    |   |     | 10                    |
|   | 1000000 10101000 00001010              |                             |                          |          |   |                          | 00001010 |    |                       |   |     |                       |
|   |                                        |                             | 255                      |          |   | 255                      |          |    | 255                   |   |     | 0                     |
|   |                                        | 1                           | 1111111                  | 1        | 1 | 111111                   |          | 1  | 111111                | 1 |     | 0000000               |
|   | 1                                      | 1 AND 1 = 1 0 AND 1 = 0 0 A |                          |          |   | ND                       | ND 1 = 0 |    |                       |   |     |                       |
| S |                                        |                             | 192                      |          |   | 168                      | •        |    | 10                    |   |     | 0                     |
|   |                                        | 1                           | 1000000                  | 1<br>'AN | 0 | 101000<br><b>' Res</b> l | JLT      | 0  | 000101                | 0 |     | 0000000               |

### IPv4 Unicast, Broadcast, and Multicast Assigning a Dynamic IPv4 Address to a Host

| rnet Protocol Version 4 (TCP/IPv4) P                                                                                    | Properties                                                          | C4.                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| eneral Alternate Configuration                                                                                          |                                                                     | C:\> ipconfig                                                                   |  |
| You can get IP settings assigned autom<br>this capability. Otherwise, you need to a<br>for the appropriate IP settings. | atically if your network supports<br>ask your network administrator | Ethernet adapter Local Area Connection:<br>IP Address 10.1.1.101<br>Subnet Mask |  |
| Use the following IP address:                                                                                           | <b>_</b>                                                            | Default Gateway 10.1.1.1                                                        |  |
| IP address:                                                                                                             | 6. 9. 9                                                             | 172.16.99.151                                                                   |  |
| Subnet mask:                                                                                                            | 4. 4. 4                                                             | C:\>                                                                            |  |
| Default gateway:                                                                                                        | 4                                                                   | Verification                                                                    |  |
| Obtain DNS server address automa                                                                                        | atically                                                            |                                                                                 |  |
| O Use the following DNS server address                                                                                  | esses:                                                              |                                                                                 |  |
| Preferred DNS server:                                                                                                   | *) * *                                                              |                                                                                 |  |
| Alternate DNS server:                                                                                                   |                                                                     |                                                                                 |  |

DHCP – The preferred method of assigning IPv4 addresses to hosts on large networks; it reduces the burden on network support staff and eliminates entry errors.

### **DHCP** - Dynamic Host Configuration Protocol

### IPv4 Unicast, Broadcast, and Multicast Unicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: **Unicast**, Broadcast, and Multicast

**#1 Unicast** –sending a packet from one host to an individual host.



### IPv4 Unicast, Broadcast, and Multicast Broadcast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, **Broadcast**, and Multicast.

**#2 Broadcast** – sending a packet from one host to all hosts in the network.

### **Directed broadcast**

- Destination
   172.16.4.255
   (broadcast address)
- All hosts in 172.16.4.0/24 network will receive packet



### IPv4 Unicast, Broadcast, and Multicast Multicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, Broadcast, and **Multicast**.

**#3 Multicast** – sending a packet from one host to a selected group of hosts

Reduces traffic

# Types of IPv4 Address Public and Private IPv4 Addresses

#### Private address blocks are:

- Hosts that do not require access to the Internet can use private addresses
  - 10.0.0 to 10.255.255.255 (10.0.0/8)
  - 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
  - 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)
- Address block is 100.64.0.0/10

### Types of IPv4 Address Special Use IPv4 Addresses

- Network and Broadcast addresses within each network the first and last addresses cannot be assigned to hosts
- Loopback address 127.0.0.1
   a special address that hosts use to direct traffic to themselves
   (addresses 127.0.0.0 to 127.255.255.255 are reserved)
- Link-Local address 169.254.0.0 to 169.254.255.255 (169.254.0.0/16) addresses can be automatically assigned to the local host
- **TEST-NET addresses** 192.0.2.0 to 192.0.2.255 (192.0.2.0/24) set aside for teaching and learning purposes, used in documentation and network examples
- Experimental addresses 240.0.0.0 to 255.255.255.254 are listed as reserved

### Types of IPv4 Address Legacy Classful Addressing

#### **IP Address Classes**

| Address<br>Class | 1st octet<br>range<br>(decimal) | 1st octet bits<br>(green bits do<br>not change) | Network(N) and<br>Host(H) parts of<br>address | Default subnet<br>mask (decimal<br>and binary) | Number of possible<br>networks and hosts<br>per network |
|------------------|---------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| Α                | 1-127**                         | 00000000-<br>01111111                           | N.H.H.H                                       | 255.0.0.0                                      | 128 nets (2^7)<br>16,777,214 hosts per<br>net (2^24-2)  |
| В                | 128-191                         | 10000000-<br>10111111                           | N.N.H.H                                       | 255.255.0.0                                    | 16,384 nets (2^14)<br>65,534 hosts per net<br>(2^16-2)  |
| С                | 192-223                         | 11000000-<br>11011111                           | N.N.N.H                                       | 255.255.255.0                                  | 2,097,150 nets<br>(2^21) 254 hosts per<br>net (2^8-2)   |
| D                | 224-239                         | 11100000-<br>11101111                           | NA (multicast)                                |                                                |                                                         |
| E                | 240-255                         | 11110000-<br>11111111                           | NA (experimental)                             |                                                |                                                         |

# Assignment of IPv4 Addresses (Cont.)



Internet service from Tier 2 ISPs.

IPv6

# The Need for IPv6

- successor to IPv4.
- IPv4 has maximum of 4.3 billion addresses,
- IPv6 provides for 340 undecillion addresses.
- IPv6 fixes the limitations of IPv4 and includes additional enhancements, such as ICMPv6.

### IPv4 Issues IPv4 and IPv6 Coexistence

Three migration techniques categories: Dual-stack, Tunnelling, and Translation.

**Dual-stack:** Allows IPv4 and IPv6 to coexist on the same network. Devices run both IPv4 and IPv6 protocol stacks simultaneously.

**Tunnelling**: A method of transporting an IPv6 packet over an IPv4 network. The IPv6 packet is encapsulated inside an IPv4 packet.

**Translation**: The Network Address Translation 64 (NAT64) allows IPv6enabled devices to communicate with IPv4-enabled devices. An IPv6 packet is translated to an IPv4 packet, and vice versa.

# Hexadecimal Number System

- Hexadecimal is a base sixteen system.
- Base 16 numbering system uses the numbers
   0 to 9 and the letters A to F.
- Four bits (half of a byte) can be represented with a single hexadecimal value.

| Hexadecimal | Decimal | Binary |
|-------------|---------|--------|
| 0           | 0       | 0000   |
| 1           | 1       | 0001   |
| 2           | 2       | 0010   |
| 3           | 3       | 0011   |
| 4           | 4       | 0100   |
| 5           | 5       | 0101   |
| 6           | 6       | 0110   |
| 7           | 7       | 0111   |
| 8           | 8       | 1000   |
| 9           | 9       | 1001   |
| А           | 10      | 1010   |
| B           | 11      | 1011   |
| C           | 12      | 1100   |
| D           | 13      | 1101   |
| E           | 14      | 1110   |
| F           | 15      | 1111   |

# Hexadecimal Number System (cont.)

Look at the binary bit patterns that match the decimal and hexadecimal values

| Hexadecimal | Decimal        | Binary    |
|-------------|----------------|-----------|
| 00          | 0              | 0000 0000 |
| 01          | 1              | 0000 0001 |
| 02          | 2              | 0000 0010 |
| 03          | 3              | 0000 0011 |
| 04          | 4              | 0000 0100 |
| 05          | 5              | 0000 0101 |
| 06          | 6              | 0000 0110 |
| 07          | <sup>1</sup> 7 | 0000 0111 |
| 08          | 8              | 0000 1000 |
| 0A          | 10             | 0000 1010 |
| 0F          | 15             | 0000 1111 |
| 10          | 16             | 0001 0000 |
| 20          | 32             | 0010 0000 |
| 40          | 64             | 0100 0000 |
| 80          | 128            | 1000 0000 |
| C0          | 192            | 1100 0000 |
| CA          | 202            | 1100 1010 |
| F0          | 240            | 1111 0000 |
| FF          | 255            | 1111 1111 |

### IPv6 Addressing IPv6 Address Representation

- 128 bits in length
- hexadecimal values
- 4 bits represents a single hexadecimal digit
- 32 hexadecimal value = IPv6 address

## -2001:0DB8:0000:1111:0000:0000:0000:02 00 -FE80:0000:0000:0000:0123:4567:89AB:CD

### EF

- Hextet used to refer to a segment of 16 bits or four hexadecimals
- Can be written in either lowercase or uppercase

#### IPv6 Addressing

## **IPv6** Address Representation



IPv6 Addressing

# Rule 1- Omitting Leading 0s

- any leading 0s (zeros) in any 16-bit section or hextet can be omitted.
- 01AB can be represented as 1AB.
- 09F0 can be represented as 9F0.
- 0A00 can be represented as A00.
- 00AB can be represented as AB.
- A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0's.

| Preferred     | 2001:  | 0DB8:00 | 00A:1000:00 | 00:00 | 00:00 | 00: <b>0</b> 100 |
|---------------|--------|---------|-------------|-------|-------|------------------|
| No leading 05 | 2001:  | DB8:    | A:1000:     | 0:    | 0:    | 0: 100           |
| Compressed    | 2001:1 | DB8:A:1 | 1000:0:0:0: | 100   |       |                  |

## Types of IPv6 Addresses IPv6 Prefix Length

- Prefix length indicates the network portion of an IPv6 address using the following format:
  - IPv6 address/prefix length
  - Prefix length can range from 0 to 128
  - Typical prefix length is /64



Types of IPv6 Addresses

## IPv6 Address Types

There are three types of IPv6 addresses:

- Unicast
- Multicast
- Anycast.

**Note**: IPv6 does not have broadcast addresses.

Types of IPv6 Addresses

## IPv6 Unicast Addresses

### Unicast

- Uniquely identifies one an IPv6-enabled device.
   Global Unicast
  - Globally unique
  - Internet routable addresses
- Can be configured statically or assigned dynamically Link-local
  - Used to communicate with other devices on the same local link
  - Confined to a single link; not routable beyond the link

Types of IPv6 Addresses

# IPv6 Unicast Addresses (cont.)

Loopback

- Used by a host to send a packet to itself
- cannot be assigned to a physical interface.
- Ping an IPv6 loopback address to test the configuration of TCP/IP on the local host.
- All-Os except for the last bit, represented as ::1/128 or just ::1.

**Unspecified Address** 

- All-O's address represented as ::/128 or just ::
- Cannot be assigned to an interface
- only used as a source address.

# IPv6 Unicast Addresses (cont.)

**Unique Local** 

- Similar to private addresses for IPv4.
- Used for local addressing within a site or between a limited number of sites.
- In the range of FC00::/7 to FDFF::/7.

## IPv6 Link-Local Unicast Addresses

- Every IPv6-enabled network interface is REQUIRED to have a link-local address
- Enables a device to communicate with other IPv6-enabled devices on the same link and only on that link (subnet)
- FE80::/10 range, first 10 bits are 1111 1110 10xx xxxx
- 1111 1110 10**00 0000** (FE80) 1111 1110 10**11 1111** (FEBF)

### IPv6 Unicast Addresses Structure of an IPv6 Global Unicast Address

- IPv6 global unicast addresses are globally unique and routable on the IPv6 Internet
- Equivalent to public IPv4 addresses
- ICANN allocates IPv6 address blocks to the five RIRs

Currently, only global unicast addresses with the first three bits of 001 or 2000::/3 are being assigned

### Structure of an IPv6 Global Unicast Address

A global unicast address has three parts: Global Routing Prefix, Subnet ID, and Interface ID.

**Global Routing Prefix** is the prefix or network portion of the address

Subnet ID is used to identify subnets within its site

**Interface ID** is equivalent to the host portion of an IPv4 address.

# IPv6 Unicast Addresses Dynamic Link-local Addresses

### **Link-Local Address**

- a link-local address enables a device to communicate with other IPv6enabled devices on the same subnet.
- the link-local address of the local router is ued for its default gateway IPv6 address.
- Routers exchange dynamic routing protocol messages using link-local addresses.
- Routers' routing tables use it to identify the next-hop router when forwarding IPv6 packets.

IPv6 Multicast Addresses

## Assigned IPv6 Multicast Addresses

- IPv6 multicast addresses have the prefix FF00::/8
- There are two types of IPv6 multicast addresses:
  - Assigned multicast
  - Solicited node multicast

### IPv6 Multicast Addresses Solicited Node IPv6 Multicast Addresses

- matches only the last 24 bits of the IPv6 global unicast address of a device
- Automatically created when the global unicast or link-local unicast addresses are assigned
- Created by combining a special FF02:0:0:0:0:0:FF00::/104 prefix with the right-most 24 bits of its unicast address

# Testing and Verification Traceroute – Testing the Path

#### Traceroute

- Generates a list of hops that were successfully reached along the path.
- If the data reaches the destination, then the trace lists the interface of every router in the path between the hosts.
- If the data fails at some hop along the way, the address of the last router that responded to the trace can provide an indication of where the problem or security restrictions are found.