
maxSCRIPT Script Language
Programmer's Reference and

User's Guide

277588 Rev. C

Metso Automation MAX Controls • 277588 •

Refer to this publication for complete and accurate information that helps you better operate and service Metso
Automation MAX Controls equipment. Your comments and suggestions are welcome.

Metso Automation MAX Controls
1180 Church Road
Lansdale, PA 19446
Attention: Manager, Technical Publications

Copyright 2000 - 2002 by Metso Automation MAX Controls
Printed in the United States of America

All Rights Reserved

Metso Automation MAX Controls • 277588 •

Contents

PREFACE ... III
How This Book Is Organized...iii
Audience ..iii
Using Online Help ...iii
Using Other Programming Facilities..iii

CHAPTER 1 .. 1-1

Introduction... 1-1
Overview..1-1

Creating a Display Containing Script...1-1
Creating Script Files...1-2

Developing Script Using maxSCRIPT...1-2
Using Dimension Statements ...1-3

Using Local Variables..1-3
Reading and Writing from the Software Backplane...1-4
Performing External Writes ...1-4
Interacting with Other maxVUE Controls..1-5

Writing Script Logic ..1-6
Using Let and If, Else Commands..1-6
Using the Bitmap Command ..1-7
Using Functions ...1-7
Using Special Variables ...1-8

Placing Scripts in Groups...1-8
Making Scripts Portable Using Parameterization ..1-8

Specifying a Percent (%) Character ...1-10
Putting It All Together ...1-10
Reviewing maxSCRIPT Error Messages ...1-10

Writes to Constants Are Prevented ..1-11
Using the maxSCRIPT Editor..1-11
Creating New Files and Projects ..1-12
Working with Projects ...1-12

Renaming the Project ...1-12
Adding Files...1-13
Renaming Files ..1-13

Editing Files ...1-14
Enabling Standard Editor Options ...1-14

Using Auto Complete...1-15
Using Line Numbering...1-16
Using Line Highlighting...1-16
Using Syntax Highlighting...1-16

Formatting Files ...1-17
Commenting and Uncommenting Text ..1-17

 maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •

Indenting and Outdenting Text ... 1-17
Toggling between Upper and Lower Case .. 1-18

CHAPTER 2...2-1

Creating maxSCRIPTs Using Simple Examples... 2-1
Getting Started .. 2-1

Creating Points to be used in the Following Exercises.. 2-1
Creating and placing a maxSCRIPT Control .. 2-2
Exercise 1: Creating a Three-State Valve Condition Using Script.. 2-4

Testing Exercise 1 in Runtime Mode .. 2-6
Exercise 2: Creating a maxSCRIPT Control Using Parameters .. 2-6

Testing Exercise 2 in Runtime Mode .. 2-8
Exercise 3: Creating a Navigation Button Using Script .. 2-8

Testing Exercise 3 in Runtime Mode .. 2-10
Studying maxSCRIPT Examples .. 2-10
Example 1: Calculate an Average, Trigger an Alarm Indicator .. 2-11
Example 2: Working with Text Strings... 2-12
Example 3: Hiding a Button in a Pop-up Display ... 2-13
Exercise 4: Using Flashing Bitmaps.. 2-14

CHAPTER 3...3-1

maxSCRIPT Script Language Reference Guide .. 3-1
Overview... 3-1

Using Dimension Statements .. 3-1
Creating Local Variables... 3-1
Creating Objects in the Local Status Server.. 3-2
Performing Demand Writes Using Command Statements... 3-3
Performing External Writes .. 3-4
Subscribing to Keyboard Groups Using _Keyboard.respool .. 3-5
Interacting with Other maxVUE Controls ... 3-7

Using maxSCRIPT Commands... 3-9
Using Let X = Y Expressions.. 3-9
Using If, Else, Else If, EndIf Expressions ... 3-10
Using the Bitmap Command ... 3-11
Using Flashing Bitmap Command... 3-11
Using the Play Command.. 3-12
Using the ToolTip Command.. 3-12
Using the Run Command .. 3-12

Using Special Variables .. 3-13
Using the Display Variable ... 3-13
Using the Mouse Clicks Variable.. 3-13
Using the Error Variable ... 3-13
Using Variables Mouserow/ Mousecol to Locate Mouse Cursor.. 3-14

Using Special Functions.. 3-14
Using the Absolute Value Function... 3-15
Using the ASCII Character Function... 3-15
Using the ASK Function ... 3-15
Using the AVI Function .. 3-17
Using the Expand Function ... 3-18
Using the Logical Negation Function.. 3-18
Using the Objmap Function to Access the TypeMap.. 3-18

Contents

v

Using the P_CONTROL and P_DETAIL Functions ...3-20
Using the QUA Function..3-21
Using the RGB Function..3-22
Using the SendMsg Function ...3-23
Using the Service Function ..3-23
Using the TRANS Function ...3-23
Using the Value Function...3-23

Creating Unique Output Names ...3-24
Changing maxSCRIPT Execution Time ..3-24
Annotating Script with Comment Text ..3-24

Metso Automation MAX Controls • 277588 •

Preface

How This Book Is Organized
maxSCRIPT is an OCX Control that lets you design your own custom
maxVUE display applications using an easy-to-learn, Basic-like script
language. This publication introduces you to maxSCRIPT programming
concepts and presents you with a script language reference guide located in
Chapter 3. If you are not familiar with maxSCRIPT, refer to Chapter 1 for an
introduction and description of the control and the associated script
language. Refer to Chapter 2 to review tutorial exercises and real examples
of maxSCRIPT scripts authored by Metso Automation MAX Controls
engineers.

Audience
This publication is intended for process control and software engineers and
programmers involved with the design and development of human-machine
interface applications in a control environment.

Using Online Help
Many of the concepts noted in this publication, such as maxVUE groups and
parameterization, are explained more fully in maxVUE online help. Press the
F1 key to access help.

Using Other Programming Facilities
maxSCRIPT is one of several controls that add programming capability to
maxVUE. Other facilities consist of:

Wrapper Calculations The easiest to implement; use this to place a one-line
calculation most places where a Software Backplane
(SBP) identifier is used.

Hidden Logic This has full Visual Basic capability, but in addition
to maxVUE, you must make a separate purchase of
the Visual Basic tools and have some knowledge of
the Visual Basic environment.

 maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•iv

You may also add Visual Basic and C + + controls to maxVUE to add full-
blown programming capabilities to maxVUE, however, these options present
some obvious disadvantages.

VB Control This option presents you with a good deal of presentation
flexibility but requires the separate purchase of VB
Professional Version and the services of a VB
programmer. It cannot take full advantage of
parameterization.

C++ Control Requires a professional C++ programmer.

Metso Automation MAX Controls • 277588 •

Chapter 1

 Introduction

 Overview
maxSCRIPT is an OCX Control that helps you design a custom display
within the maxVUE environment. Use maxSCRIPT for screen design
applications to incorporate customized logic not available from any of the
other existing standard controls.

maxSCRIPT uses a simplified Basic-like language that you can learn quickly
to create logical statements and perform simple calculations. One or more
instances of this control may be placed onto any maxVUE display.

Use the control to create local data and perform simple calculations using
live data. The results of the calculations can be displayed on the associated
display.

maxSCRIPT is an ideal way to create screen animations, such as an icon that
changes color based on values obtained from multiple comparative inputs.
For instance, use maxSCRIPT to create a pump icon. The valve on the pump
may then be programmed to change color based on a given state, such as on,
off, idle, broken, etc.

Color changes can be applied to other controls. For example, assume your
process contains a tank that is filled with a reagent that must be heated to
1000 degrees. Script logic could be used to change the color of the graphic
every 250 degrees. Logic could be set up as follows:

Degrees Color of Tank
0 - 250 Blue
251 - 500 Yellow
501 - 750 Cyan
751 - 1000 Red

Creating a Display Containing Script
To create a display containing maxSCRIPT expressions and commands:

• Use the mouse to create and place the maxSCRIPT control object on
your display. You may scale the control to any size including full screen.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-2

• Access the Script property page to create or edit the script file in a
maxSCRIPT Editor session. Use the Editor to create simple text files
with a default extension of .mxs.

Note: the maxSCRIPT Editor, an integrated text editor, simplifies script
editing and debugging. Scripts may also be edited in a simple text editor,
such as Notepad, as long as the result is a simple ASCII text file (no
formatting characters).

• Save the script file to a default script path, such as
c:\custom\database\scripts.

An additional control property page called Default lets you define a bitmap
that you want to appear in the maxSCRIPT window to replace the standard
maxSCRIPT icon.

Similar to other controls, property pages are available to define the
maxSCRIPT control as a navigation button (Display Navigation Page), to
define borders for the button (Border Page), and to define window sizing and
placement (Drawing Options).

Creating Script Files
Script files should have the extension .mxs. Note the control contains only a
reference to a script file. It is common to reuse script files many times even
on the same display.

A script may be stored with a display if used only by that display. When you
intend to use scripts multiple times, they should be kept in the common area
c:\custom\database\scripts.

maxSCRIPT is compiled in order to improve performance. When a script is
executed for the first time by maxVUE Runtime, it is automatically compiled
into a new file that is smaller and executes faster. The new file, which is
located in the same folder as the text script file, has the extension “.mxo”.

One Caution: if you use Notepad or another text editor to edit a script
outside of the maxVUE Editor, the old .mxo file will not be updated (the
maxSCRIPT Editor automatically deletes the .mxo file for you if you make
an edit). You can simply delete the .mxo file to cause a compilation to take
place the next time that the script is executed.

Developing Script Using maxSCRIPT
Scripts associated with a particular presentation are typically small in size.
You may place as many scripts within a graphics presentation as needed
using multiple maxSCRIPT controls. There is one script per control.

 Introduction

Metso Automation MAX Controls • 277588 • 1-3

Note: scripts have no size limits (other than any editing utility size
limitations). Keep in mind, however, that as the script is compiled when the
display is called up, large scripts may effect display performance.

Scripts consist of dimension statements, commands, variables, and special
functions, and other elements, all of which are listed in Chapter 3,
"maxSCRIPT Script Language Reference Guide."

Using Dimension Statements
Dimension statements, which will appear in virtually all scripts that you
create, define names (aliases) that allow you to read data from and perform
writes to local variables and to locations within the Software Backplane.

You may use dimension statements to:

• Create named objects in the Local Status Server to output information to
other Software Backplane users

• Interact with other controls
• Define external values to be written to, such as an existing point in the

Local Status Server that is preserved even when you close a maxVUE
session.

• create local variables to be use exclusively within this program

Using Local Variables
The dimension syntax for a local variable is written as:

Dim <alias> as <type>

Where:

<alias> any string that uniquely identifies this value in the rest of the script

<type> can be any of the following:

dbl Double precision, floating point integer
int integer value
str String characters such as a description or tagname

Example

Dim x as dbl
Dim x as int
Dim x as str

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-4

Reading and Writing from the Software Backplane
To read and write to values from the Software Backplane use the following
syntax:

Dim <alias> as <type>(<service>.<extended member>)

Where:

<alias> any string that uniquely identifies this value in the rest of the script
<service> any valid SBP service name
<extended member> any valid SBP extension
<type> consists of the following in and out types

xxxIn types refer to an already existing variable, which is to be used in a
calculation.

DblIn – double in Double precision, floating point integer; typically a
variable used in a calculation.

IntIn – integer in Integer variable
StrIn – string in String characters such as a description or tagname

xxxOut types create (and delete when the screen closes) an LSS object for
output (as well as input if necessary) so that other controls can access the
calculated results. A <service> is created for the purpose of housing outputs
in the Local Status Server. The same service can (and should) be used for
multiple members. The members can be of all different types.

DblOut – double out Double precision, floating point integer; an output
to be created so that controls can access calculated
results

IntOut – integer out Integer variable
StrOut – string out String characters such as a description or tagname

Examples:

dim xyz as dblOut(b.condou)
dim i12 as intOut(b.conint)
dim txt as strOut(b.contxt)

dim asaw as dblIn(saw.ao)
dim lss_service_count as intIn(_lss.numsvc)
dim now as strIn(_lss.time)

Performing External Writes
To access an existing object as an output, write the dimension statement as
dimx.

 Introduction

Metso Automation MAX Controls • 277588 • 1-5

Example:

dimx s as strout(_sel_pt.tagname)

This lets you write to existing software backplane service members, such as
DPU point (service) attributes (members) and LSS service members, such as
_sel_pt.

The function of the x is to prevent the script from creating an _lss variable of
the name (<external name>.<external attribute>), which is deleted when the
script is terminated.

DIMX is only functional for dimension statements using out types as shown
in the following:

dimx <name> intout(<external name>.<external attribute>)
dimx <name> dblout(<external name>.<external attribute>)
dimx <name> strout(<external name>.<external attribute>)

Example

Dimx selpt as strout(_sel_pt.tagname)
let selpt = “fic101”

Interacting with Other maxVUE Controls
To interact with other controls on a given maxVUE display, use the
following syntax:

Dim <name> as <xxx>ctlout(<object name>.<parameter>

Where:

<name> is the alias for this parameter within maxSCRIPT
<xxx> is replaced by Dbl, Int or Str; note that the out types include the
characters ctl, indicating the script will interact with other controls. For
example, Dblctlout.
<object name> is the name of the object as seen and set in the Layers button
of the maxVUE Editor
<parameter> is from the list:
 x - the x position for percent of screen

y - the y position percent of screen
width - the width of the object
height - the height of the object
color - the color of the object
linecolor - the linecolor of the object

Your script should include one of the following out types

Dblctlout; double integer out to
control

Double precision, floating point integer
an output to be created so that controls

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-6

can access calculated results.

Intctlout: Integer out to control Integer value

Strctlout; string value out to
control

String characters such as a description,
or tagname

Example:

Dim x as intctlout(object.x)
Dim y as intctlout(object.y)
Let y = 10

Writing Script Logic
Once you identify write and read operations (using dimension statements to
obtain data), you may use commands combined with logical expressions to
perform various operations that incorporate the data. maxSCRIPT uses the
following commands, variables, and functions to create logical arguments:

Table 1-1. maxSCRIPT Commands, Variables, and Functions
Commands Variables Functions
Let
If, else, etc
Bitmap/fbitmap
Play
Tooltip
Run

Display
Mouseclick
Mouserclick
Mousedclick
Mouserow
Mousecol
Error

ABS; Absolute Value
ASC; convert number to ASCII character
AVI; specify and display frames
EXP; expand parameters in real time
NOT; Logical Negation
OBJMAP; perform lookup in typemap database
QUA; checking variable quality
SVC; select a service
TRANS; enable dual language translator
RGB; calculate a color
VAL; convert ASCII string to double

The basic syntax of any logical expression is Command plus argument. An
expression begins with one of the commands listed in the preceding table
and uses variables, functions, or a combination of both as part of its
argument. Refer to the following sections for specific examples of these
three script elements.

Using Let and If, Else Commands
Use Let statements and if, else statements to create logical expressions and
set up simple arithmetic operations. The syntax of an expression using Let is:

Let variables = expression

 Introduction

Metso Automation MAX Controls • 277588 • 1-7

For example:

Let c = a + b.

The following script sample uses let and if, else expressions.

let output = (Input1 + Input2) / 2

if (AnyAlarm1 = 1) or (AnyAlarm2 = 1)
let AnyAlarm = 1

Else
let Anyalarm = 0

EndIf

Using the Bitmap Command
maxSCRIPT also lets you display bitmaps using the Bitmap command. You
may create a maxSCRIPT control incorporating multiple bitmaps that may
represent, say, a state change in your process or various mode changes, or
whatever your application may call for. Using if, else logic, the script may
display the bitmap associated with a given state. An additional fbitmap
option lets you create a flashing bitmap. The following sample script shows
the Bitmap command and the path name of a bitmap:

Bitmap "C:\custom\displays\operating\common\bmp\s-misc-1.bmp"

 See "Using maxSCRIPT Commands," in Chapter 3 for a listing of other
available commands and their syntaxes.

Using Functions
Functions are so called because they are used as a function of a variable in
an expression as in this syntax:

Let variable = function argument

For example:

Let x = ABS (4)

maxSCRIPT supports the functions listed in Table 1-1, which are also listed
in Chapter 3, "Using Special Functions."

The following sample script includes the RGB function. In this example the
RGB function changes the color of the caption text placed on a button based
on the state of the input BExp1. When the if statement becomes true, the
caption appears, assuming the color represented by "96,96,96". When the if
statement is not true, the RGB function generates a null string representing
no color, effectively canceling the button text.

If BExp1 = 1

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-8

Let ButtonTxtColor1 = RGB "96,96,96"
Else

Let ButtonTxtColor1 = RGB "0,0,0"
Endif

Using Special Variables
Variables, such as Display, let you open a display or pop-up, and
Mouseclick, let you create a script control that responds to mouse clicks.
The following sample script logic contains both:

If mousedclick
Let mousedclick = 0
let display = "popups\zpop-ct-dv2-o-s-c.mn
dp1=%param1%"

endif

See "Using Special Variables," in Chapter 3 for a listing of all the available
variables and their syntaxes.

Placing Scripts in Groups
You may place scripts in a group making it possible to reuse them multiple
times in many other instances. A Group is a named collection of objects,
such as drawing objects, ActiveX Controls, and other groups, that maxVUE
treats as a single entity. Groups can be cut, copied, pasted, moved, resized,
and deleted just like other objects. This makes it easy to reuse a drawing
depicting some process many times in other displays. You may create group
libraries containing grouped drawings that can be incorporated in other
displays and modified to adapt it for other purposes.

Where scripts are included with a group, cutting and pasting the group will
also take the script reference along. Note in this case, multiple groups would
be using the same script. This is handy when you want to make global
changes to script logic that affect all instances.

Making Scripts Portable Using Parameterization
To make maxSCRIPTs even more portable, you may create scripts using
parameterization. With parameterization you may create displays and display
groups containing maxSCRIPT controls and other standard controls that do
not contain specific point references. Instead, point references are indicated
by %paramn% or %dpn% where n is the parameter or display parameter
number. Expansion is identical to that of any other control.

 Introduction

Metso Automation MAX Controls • 277588 • 1-9

Example

Dim p1 as dblIn(%param1%)
Dim p2 as dblIn(%param2%.ao)
Dim out as dblOut(%param3%)
Let out = p1 + p2

Parameters, such as %Param1% or %DP1%, can then be defined differently
for each display or display group.

You must include the control in a group – even if it contains only a single
script item – to properly use parameters. If you edit the parameters of a
control not in a group, you will be editing the one and only set of default
parameters for the whole display.

Select Edit Group Parameters from the Group Menu to access the
Parameters Property Sheet.

Enter the point name to be used with the Parameter in the Parameter
Assignment field and a description for the parameter. A parameter may be
defined to be another parameter such as %DP1%. At run-time, maxVUE will
continue parsing the parameterized name until it has been resolved.

Now, you may create a display once and use it many times in many places. If
you define subsystems using hierarchical identifiers, for instance, you will
probably find yourself creating similar displays for multiple hierarchical
groups.

You are now free to copy the display containing the parameter names. At
runtime, maxVUE decodes the parameters it finds and inserts the actual
values.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-10

Note: by using parameters for the outputs of the script, the same parameter
can be used for the script as is used for a Bar or a List Box insuring no
mistakes.

Specifying a Percent (%) Character
Percents are part of the expansion of parameters - %param1% for example.
As such they are special characters. If you actually want a percent (%), you
must use %%. Example:

Dim x as dblin(test.op%%)

Putting It All Together
The following shows a complete sample script incorporating many of the
elements introduced in the proceeding discussion. This script will cause an
on-screen alarm indicator to be set based on the state of two inputs. For a
detailed discussion of this script, refer to Chapter 2, "Example 1: Calculate
an Average, Trigger an Alarm Indicator."

Bitmap "C:\custom\displays\operating\common\bmp\s-misc-1.bmp"

Dim Input1 as intin(%param1%.out)
Dim Input2 as intin(%param2%.out)
Dim Output as intout(%param1%_avg.out)

Dim AnyAlarm1 as intin(%param1%.Anyalarm)
Dim AnyAlarm2 as intin(%param2%.Anyalarm)
Dim AnyAlarm as intout(%param1%_avg.Anyalarm)

let output = (Input1 + Input2) / 2

if (AnyAlarm1 = 1) or (AnyAlarm2 = 1)
let AnyAlarm = 1

Else
let Anyalarm = 0

EndIf

Reviewing maxSCRIPT Error Messages
maxSCRIPT produces two types of errors, run-time and compile. The script
is compiled when it is loaded. Syntax is partially checked. Run-time errors
are mostly "tag or attribute not found" types of errors. To view errors in the
maxVUE editor, right click on the control and select Control Properties
from the menu to bring up the Scripts property page. View errors from this
page.

 Introduction

Metso Automation MAX Controls • 277588 • 1-11

Writes to Constants Are Prevented
maxVUE includes diagnostic capabilities to prevent writes to constant data.
The following will result in an error:

dim s as strin(_lss.time)
let s = "now"

This generates the following error message. The 3 indicates that the error
was detected at line three.

Write to a constant (3)

In another script example, the following contains a logic error that would
yield the erroneous result i = 2. maxSCRIPT diagnostic capabilities prevent
this from occurring.

dim i as int
let 1 = 2
let i = 1

Using the maxSCRIPT Editor
Use the maxSCRIPT Editor you to view, create or edit maxSCRIPT (*.mxs)
files in a multiple document environment. The integrated maxVUE Editor,
similar to any text or word processing program, simplifies maxSCRIPT
editing and debugging as you create process displays.

When you place a maxSCRIPT instance on a maxVUE display and create a
script file, the following editing window appears: Most of the basic
functions can be accessed through a menu, a toolbar button or a shortcut key.

]

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-12

Creating New Files and Projects
maxSCRIPT Editor allows you to create individual maxSCRIPT files or a
maxSCRIPT project. Create a maxSCRIPT project to group together
common or relevant files. See "Working with Projects," the next section.

To create a new maxSCRIPT file:

From the File menu, point to New and click maxSCRIPT file.

Alternatively, click the New icon on the toolbar or press <CTRL> + N.

To create a new project click 'New' then 'maxSCRIPT Project' under the File
menu or the <CTRL> + J shortcut key.

Working with Projects
To group related maxSCRIPT files in one place, create a project file.

To create a project file:

From the File menu, point to New and click Project to access the Create
Project dialog.

Enter a file name for the project, select a directory location, and click Save.
When you save the file, the Editor adds a *.msp to the file name.

When you create the project file, the Editor opens a properties window
containing a Windows Explorer style directory tree showing all the files in
the current project.

The files can be given a name to identify themselves in the project. Any
changes to the project will not be saved until Save Project is clicked under
the File menu.

Renaming the Project
To change the name of the current project:

Select the root file name, the topmost node in the project window, right
click and select Rename from the popup menu.

 Introduction

Metso Automation MAX Controls • 277588 • 1-13

Renaming the project gives the project a name to identify itself and does not
change the actual filename.

Adding Files
To add a file to the project

Right-click anywhere in the project window and click Add, or click the Add

 button on the project window toolbar.

Removing Files

To remove a file from the current project:

right click on the file you wish to remove and click Remove, or click the

Remove button on the project window toolbar.

Renaming Files
To change the name of a file in the current project, select the file you wish to
rename, right click and select Rename from the popup menu. Renaming the
file simply changes the name to identify itself in the project and does not
change the actual filename.

Creating New Files and Projects

maxSCRIPT Editor allows you to create individual maxSCRIPT files or a
maxSCRIPT project that can be used to group common or relevant files in an
orderly manner.

Creating New Files To create a new maxSCRIPT file simply navigate the
File menu to New then maxSCRIPT File. You can also click the New button
on the toolbar or use the <CTRL> + N shortcut key.

Creating New ProjectsA maxSCRIPT project helps the user to group
relevant files in an easily accessible fashion. To create a new project click

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-14

New then maxSCRIPT Project under the File menu or the <CTRL> + J
shortcut key.

Editing Files

Cut, Copy, Paste Cut, copy, and paste functions can be accessed from the
Edit menu or by clicking their icons on the toolbar.

Undo and Redo Undo and redo can be accessed from the Edit menu or by
clicking their icons on the toolbar. Undo can also be accessed by using the
<CTRL> + Z shortcut key. You can undo and redo actions an unlimited
amount of times.

Find, Find Next, and Replace

Find, find next and replace functions can be accessed from the Edit menu,
clicking their icons on the toolbar or using their <CTRL> + F, F3, and
<CTRL> + H shortcut keys respectively.

Selecting all text can be accessed from the Edit menu or by using the
<CTRL> + A shortcut key.

Enabling Standard Editor Options
The maxSCRIPT Editor includes standard features that can be enabled or
disabled from the Options menu accessible from the Tools menu:

Auto complete

Line numbering

Line highlighting

Syntax highlighting

All of these features can be seen in the following picture of an edit window:

 Introduction

Metso Automation MAX Controls • 277588 • 1-15

Using Auto Complete
Use the auto complete feature to select commonly used attributes from a
pop-up list as you create script. The feature anticipates the attribute you
intend to type and automatically completes the word.

To use auto complete:

Select Options from the Tools menu to enable auto complete, if the feature is
not already enabled. From the Options dialog, check Auto Complete to
enable it. Uncheck the checkbox to disable the feature.

Inside the maxSCRIPT Editor window, press the period key <.> to access a
pop-up list of commonly used attributes.

As you continue to type as normal, the auto complete feature will select the
word it thinks you are typing.

Press the [TAB] or [SPACE] key or click the selection to finish the word.
Press the [ENTER] key to insert whatever word you have typed in the auto
complete box without finishing the word.

You may customize the auto complete attributes list to suit your specific
requirements.

To add attributes to the auto complete list:

Select MaxScriptEditor.txt from the Tools menu. When you edit the
MaxScriptEditor.txt file it will be placed in C:\Custom\Displays\

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-16

Operating\Database\. The original MaxScriptEditor.txt file can be found in
the C:\MCS\Setup\ directory and should not be edited.

Using Line Numbering

Line numbers permit you to quickly move to a specific area in a file or to
debug an error from maxVUE.

To move directly to a specific line number:

Select Options from the Tools menu to enable line numbering, if the feature
is not already enabled. From the Options dialog, check Line Numbering to
enable it. Uncheck the checkbox to disable the feature.

Press <CTRL> + G. to access the Goto Line dialog box , enter a line number
and click OK.

 To change the appearance of line numbers:

Select Options from the Tools menu and under line numbering, check Bold
or Italics.

Using Line Highlighting
Line highlighting can help to identify the current line being edited by
coloring the current line yellow.

To enable or disable line highlighting:

Select Options from the Tools menu and check Line Highlighting to enable
the feature or uncheck the checkbox to disable the feature.

Using Syntax Highlighting
Syntax Highlighting greatly reduces the chance of error by coloring
keywords, operators and strings common to the maxSCRIPT language.
Keywords are colored blue, operators red, and strings purple.

To enable or disable syntax highlighting:

Select Options from the Tools menu and check Syntax Highlighting to
enable the feature or uncheck the checkbox to disable the feature.

 Introduction

Metso Automation MAX Controls • 277588 • 1-17

Formatting Files

Commenting and Uncommenting Text

To annotate maxSCRIPT with free form comments, notes, special
instructions, and so forth, begin each comment line with any of the
following:

Rem
; Semicolon character
' apostrophe character

When maxSCRIPT is executed, any text beginning with the above characters
is ignored.

To comment text automatically:

Place your cursor on the line to be commented and click the Comment button
on the formatting toolbar.

You may also select Comment Block from the Format pull-down menu or
press <CTRL> + I shortcut key.

To uncomment text automatically:

Place your cursor on the line to be uncommented and click the Uncomment
button on the formatting toolbar.

You may also select Uncomment Block from the Format pull-down menu or
press < <CTRL> + U shortcut key.

Indenting and Outdenting Text

To indent a line of text in a script file:

Place your cursor on the line you wish to indent and click the Indent button
on the formatting toolbar.

You may also select Indent Text from the Format pull-down menu, or press
the <Tab> key.

To outdent a line of text in a script file:

Place your cursor on the line you wish to outdent and click the Outdent
button on the formatting toolbar.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588 •1-18

You may also select Outdent Text from the Format pull-down menu, or press
<SHIFT> + TAB.

Toggling between Upper and Lower Case

To change text from uppercase to lowercase and vice-versa navigate the
Format menu, click the To Lowercase or To Uppercase buttons on the
toolbar, or by use their <CTRL> + L and <CTRL> + K shortcut keys
respectively.

Toggle Bookmark To toggle a bookmark at the current line click Toggle
Bookmark from the Format menu. Bookmarks allow you to quickly access
specific lines of text. You can make as many bookmarks you want in the
opened file but will not be retained after closing and opening the file again.
If you’re using maxVUE Editor to create process graphics and a
maxSCRIPT error is generated, the maxSCRIPT file will be opened in
maxSCRIPT Editor with a bookmark at the line with the error.

Moving through Bookmarks: to move between bookmarks click Next
Bookmark or Previous Bookmark from the Format menu or use the F2 and
<SHIFT> + F2 shortcut keys respectively.

Clear Bookmark: to clear all the bookmarks in the current file click Clear
Bookmarks from the Format

Shortcut Keys

maxSCRIPT Editor has many shortcut keys that make it easy to access
common operations. The following table lists the default keystrokes and
their associated actions.

New maxSCRIPT File Ctrl-N
Open maxSCRIPT File Ctrl-O
Save File Ctrl-S
New Project Ctrl-J
Open Project Ctrl-R
Print Ctrl-P
Cut Ctrl-X
Copy Ctrl-C
Paste Ctrl-V
Select All Ctrl-A
Select Line Ctrl-Alt-F8
Undo Ctrl-Z
Next Word Ctrl-RightArrow
Previous Word Ctrl-LeftArrow
Delete Next Word Ctrl-Delete
Delete Previous Word Ctrl-Backspace
Document Start Ctrl-Home

 Introduction

Metso Automation MAX Controls • 277588 • 1-19

Document End Ctrl-End
Comment Block Ctrl-I
Uncomment Block Ctrl-U
Indent Tab
Outdent Shift-Tab
Convert to Lowercase Ctrl-L
Convert to Uppercase Ctrl-K
Create New Line (above) Ctrl-Shift-N
Next Bookmark F2
Previous Bookmark Shift-F2
Find Ctrl-F
Find Next F3
Find Previous Shift-F3
Replace Ctrl-H
Goto Line Ctrl-G
Goto Matching Brace Ctrl-]
Set Repeat Count Ctrl-R
Toggle Whitespace Display Ctrl-Alt-T
Insert File Path from Dialog Ctrl-F1
Scroll Window Down Ctrl-UpArrow
Scroll Window Up Ctrl-DownArrow
Scroll Window Left Ctrl-PageUp
Scroll Window Right Ctrl-PageDown
Help F1

Note: Holding down shift when using any of the navigational shortcut keys will select any text that the cursor moves
through.

Metso Automation MAX Controls • 277588 •

Chapter 2

Creating maxSCRIPTs
Using Simple Examples

 Getting Started

To use the maxSCRIPT control effectively you need to become acquainted
with the maxSCRIPT scripting language. This simple but powerful script
language consists of a relatively small number of commands, special
variables and functions that you may learn with ease. Script elements are all
listed in detail in the maxSCRIPT Script Language Reference Guide in
Chapter 3.

This chapter shows you how to create a few simple maxSCRIPT controls by
example in three introductory exercises. The first exercise shows you how to
display bitmaps based on the state of an analog output. A second exercise
shows you how to implement a similar maxSCRIPT using parameterization.
A third exercise demonstrates the use of the mouseclick variable.

The exercises are followed by four examples of script developed for real
applications by Metso Automation MAX Controls engineers. Each example
illustrates an aspect of script that you may implement when you compose
your own script files.

Creating Points to be used in the Following Exercises
Before getting started, you must first create the temporary points,
fuel_flow.pid and air_flow.pid. These points will be used as simulated
controllers that you may manipulate throughout these exercises.

To create simulated points:

1. From the Start menu, point to Programs, maxDNA, Utilities, and click
TestSBP to open the TestSBP utility dialog display.

2. Under Operation, select Write; under Write Type select Empty.

3. In the Identifier field, type the following:

_lss.addsvc. fuel_flow.pid

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-2

4. Click the Apply button to add this simulated point to the Local Status
Server.

After you add fuel_flow.pid, follow the same steps to add the second
simulated point, air_flow.pid.

When you finish, you will have added two new services to the Local Status
Server. To confirm that the services were added, open the LLS dialog and
locate the two points you added under the service list. When you select any
of the points, a list of default attributes appears under the Member list,
including AO.

Note: when you close maxVUE and shutdown the maxSTATION, these two
services will be deleted from the Local Status Server.

Creating and placing a maxSCRIPT Control
Before demonstrating maxSCRIPT script creation using these examples, lets
get started with the basics, calling out the control.

To place a maxSCRIPT control in a maxVUE display:

1. Double click on the maxVUE Editor icon appearing on the Windows NT
desktop to open the editor tool.

2. Click the New tool button to access the file directory dialog box and
enter a file name, such as mydisplay.mn, or any name meaningful to you.

3. Click the maxSCRIPT Control tool button from the OLE Animator
tool bar. Place the cursor on the desired location on the screen and click
but do not release the button.

4. Drag the mouse to size the maxSCRIPT display window as desired and
release the button when satisfied with the dimensions. Remember this
will be the size and location of the bitmap window.

5. Click the Select tool button and click on the maxSCRIPT control
you just created to select it.

6. Right-click to bring up the Control Menu pop-up and select Control
Properties from the menu to bring up the control's two property pages,
Script and Default.

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-3

7. From the Script tab, click the New button to create a new script and
enter an appropriate name for the script. Create a file location under the
Custom directory such as c:\custom\database\scripts. Any additional
scripts that you create should be saved to this location.

8. Click the Save button to bring up the maxSCRIPT Editor.

9. From the maxSCRIPT Editor, enter the desired code and select Save
from the File menu when you are done.

10. From the Default tab, enter an image file or background color that you
want to appear in the control window to replace the standard icon that
appears when you first call out a maxSCRIPT instance.

This summarizes all the steps required to create a maxSCRIPT control. Now
you're ready to create scripts based on the examples outlined at the
beginning of this chapter. Refer to the next sections.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-4

Exercise 1: Creating a Three-State Valve Condition Using Script
In this first exercise, you will create a maxSCRIPT control that displays one
of four bitmaps based on the state of an analog output. The bitmaps may
consist of graphical representations of a pump valve. Each bitmap depicts an
identical pump valve image, however, the fill colors vary from image to
image. One bitmap may be red, another green, another yellow, and a fourth
image may use a combination of red and yellow. Each color represents a
different flow state. The following figure shows one version of the pump
valve bitmap rendered in gray scale.

The script will consists of three common script language elements, the
dimension statement, If, Else conditional statements, and the bitmap
command. In addition to the maxSCRIPT pump control, you'll be creating
another maxSCRIPT control containing a button that calls out the control.

Refer to the "maxSCRIPT Script Language Reference Guide" in Chapter 3
for a full listing of script expressions and commands and their syntaxes.

To create the control:

 Follow the steps in the previous section, "Creating and Placing a
maxSCRIPT Control," to call out the control and open a maxSCRIPT Editor
session.

1. To begin the script enter the following dimension statement:

In this dimension statement fuel is a double (floating) in from the tagname
fuel_flow.ao.

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-5

2. The rest of the script uses if, else conditional expressions that
incorporate bitmap commands as shown in the following figure:

3. Save the script file using maxSCRIPT Editor menu options. In our
example, the script is named 3-state-vlv.mxs.

4. From the Controls Property Default Page select a default bitmap to
display in the maxSCRIPT control window. This should be one of the
bitmaps based on valve conditions.

5. Click on the Save tool button to save the changes to mydisplay.mn,
or whatever name you choose.

Create a screen button using a new instance of maxSCRIPT to display
swap to mydisplay.mn, and close the maxVUE Editor. Type the
following script to create a screen button in maxSCRIPT:

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-6

In this suggested script, the following line contains the path name of the
target display:

Let display = "pump/pump.mn"

Substitute here the name of your target display containing the
maxSCRIPT you created in this exercise.

Note: exercise 3 discusses the mouseclick variable at length.

Testing Exercise 1 in Runtime Mode
To see if the script you just created actually works, you must open it in
maxVUE Runtime.

To test your script:

1. From the Windows NT desktop, double click on the maxVUE Runtime
icon to invoke the application.

2. Click anywhere on the logo screen (but away from the maxVUE logo
animation) to open the Main Menu display.

3. Click on the maxSCRIPT button you created to display swap to the
mydisplay.mn display.

4. Select fuel_flow as the selected point and bring up the faceplate. Increase
or decrease the AO to within the valve condition values specified in the
maxSCRIPT. Are the Bitmaps changing based on the AO of the
specified tag?

Exercise 2: Creating a maxSCRIPT Control Using Parameters
In this exercise, you'll create a maxSCRIPT control similar to the one you
created in Exercise 1, only this time instead of using a specific point
identifier, you will use parameters. As noted in Chapter 1, parameterization
makes it possible to create a control once and reuse it again for other screen
applications. Refer to "Making Scripts Portable Using Parameterization."

Before you attempt to perform this exercise, review Exercise 1.

To create a control using parameters:

1. From the maxVUE Editor open the display you created in Exercise 1.

2. Click the Select tool button and click on the maxSCRIPT control
you created in the previous exercise to select it.

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-7

3. Copy and paste the maxSCRIPT instance somewhere on the display.

4. Right-click to bring up Control Menu pop-up and select Control
Properties from the menu to bring up the control's two property pages,
Script and Default.

5. From the Script tab, click the Edit button to select the script for the 3-
state valve condition you created earlier.

6. In the dimension statement, change fuel to ao as a double (floating) in
from a group parameter instead of a specific point. Replace the point
identifier (fuel_flow.ao) with (%Param1%.ao). Refer to the revised
script in the following figure.

7. From the maxSCRIPT Editor File menu, save the script under a new
name, such as 3-state-vlv-param.

8. Click the Select tool button and click on the maxSCRIPT control
you created. Right-click to bring up Control Menu pop-up and select
Group from the context menu.

9. Select the Group, Create New Group – From Selected Objects option
to make the maxSCRIPT instance a group.

10. Select the Group, Edit Group Parameters option and edit the Param1
assignment to be Fuel_flow.

11. Now create a second instance of the script for the point air_flow. Click

the Select tool button and click on the maxSCRIPT control you
created in this exercise to select it. Copy and paste the maxSCRIPT
instance somewhere on the display.

12. Edit group parameter 1 of the copied script to air_flow.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-8

13. Click the Save tool button to save the changes to your mydisplay.mn
display and close the maxVUE Editor.

Testing Exercise 2 in Runtime Mode
To see if the script you just created actually works, you must open it in
maxVUE Runtime.

To test your script:

1. From the Windows NT desktop, double click on the maxVUE Runtime
icon to open the application.

2. Click anywhere on the logo screen (but away from the maxVUE logo
animation) to open the Main Menu display.

3. Edit the screen button you created in the previous exercise to display
swap to mydisplay.mn, and close the maxVUE Editor.

4. Select fuel_flow as the selected point and bring up the faceplate.
Increase or decrease the AO to within the valve condition values
specified in the maxSCRIPT. Now select and manipulate air_flow to
view two instances of a script control operating independently while
using the same script file. Are the Bitmaps changing based on the AO of
the specified tag?

Exercise 3: Creating a Navigation Button Using Script
maxSCRIPT includes three mouse click variables that you may incorporate
in a maxSCRIPT control with other script logic. Using a specific mouse
click variable, you may design a screen navigation button that responds to a
single left mouse click, single right mouse click or a double click. The button
may use any background including bitmaps and be scaled to any size
including full screen.

Refer to the "maxSCRIPT Script Language Reference Guide" in Chapter 3
for a listing of mouseclick variables.

To create script using a mouse click variable:

1. With the maxVUE Editor open on your display, click on the New
tool button to access the file directory dialog box and enter a file name,
such as mydisplay_exercise3.mn or any name of your choosing.

2. Click on the maxSCRIPT Control tool button from the OLE
Animator tool bar. Place the cursor on the desired location on the screen
and click but do not release the button.

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-9

3. Drag the mouse to size the maxSCRIPT display window as desired and
release the button when satisfied with the dimensions. Remember this
will be the size and location of the navigation button.

4. Click the Select tool button and click on the maxSCRIPT control
you just created to select it.

5. Right-click to bring up Control Menu pop-up and select Control
Properties from the menu to bring up the control's two property pages,
Script and Default.

6. From the Script tab, click the New button to create a new script and
enter an appropriate name for the script, such as display_swap.mxs.
Click the Save button to bring up the maxSCRIPT Editor.

7. From the maxSCRIPT Editor, enter the desired code and select Save
from the File menu when you are done. Create a file location under the
Custom directory such as c:\custom\database\scripts.

8. The first line of script uses the bitmap command to define the
background for the display button. Refer to the following figure:

9. The next two lines set up the conditions for the display swaps based on
the value of the mouseclick variable. Refer to the following figure:

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-10

10. The next line of script specifies the target display you wish to open with
a mouse click. Enter the name of an existing maxVUE display, such as
the displays you created in the previous exercises containing
maxSCRIPT controls.

Be sure the correct full file path and display name (including file
extension) is specified. The file path must begin after
C:\Custom\Displays\Operating. For example, Main\Mainmenu2.MN,
Boiler\Boiler.MN, Air\Air.MN, etc. Refer to the following figure:

11. End the condition (endif) and save the script file using the maxSCRIPT
Editor menu options.

Testing Exercise 3 in Runtime Mode
To see if the script you just created actually works, you must open it in
maxVUE Runtime.

To test your script:

1. From the Windows NT desktop, double click on the maxVUE Runtime
icon to open the application.

2. Click anywhere on the logo screen (but away from the maxVUE logo
animation) to open the Main Menu display.

3. Click the navigation button you created to display swap to the target
display you specified in your script, such as mydisplay.mn or whatever
you chose to call it.

Studying maxSCRIPT Examples
After completing the proceeding exercises, you're probably ready to look at
several real examples of maxSCRIPT scripts. The scripts in the following

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-11

examples each incorporate some script coding ideas that you may want to
borrow when you create your own scripts.

Example 1: Calculate an Average, Trigger an Alarm Indicator
The following script sets off an on-screen yellow alarm indicator when the
state of two alarm attributes associated with two input values become true.

Bitmap
C:\custom\displays\operating\common\bmp\hide_bitmap.bmp"

Dim Input1 as intin(%param1%.out)
Dim Input2 as intin(%param2%.out)
Dim Output as intout(%param1%_avg.out)

Dim AnyAlarm1 as intin(%param1%.Anyalarm)
Dim AnyAlarm2 as intin(%param2%.Anyalarm)
Dim AnyAlarm as intout(%param1%_avg.Anyalarm)

let output = (Input1 + Input2) / 2

if (AnyAlarm1 = 1) or (AnyAlarm2 = 1)
let AnyAlarm = 1

Else
let Anyalarm = 0

EndIf

The script begins with a bitmap command followed by a path name.

Bitmap
"C:\custom\displays\operating\common\bmp\hide_bitmap.bmp"

In this case, the bitmap is only use to hide the maxSCRIPT control on the
display. The bitmap command calls out a background color that is identical
to the screen display color, making the control blend in with its background
and disappear from view. This is a convenient way to hide the control when
it need not be visible, reducing screen clutter and confusion.

The next part of the script uses six dimension statements to read and write
values to the Local Status Server in the Software Backplane.

Dim Input1 as intin(%param1%.out)
Dim Input2 as intin(%param2%.out)
Dim Output as intout(%param1%_avg.out)

Dim AnyAlarm1 as intin(%param1%.Anyalarm)
Dim AnyAlarm2 as intin(%param2%.Anyalarm)
Dim AnyAlarm as intout(%param1%_avg.Anyalarm)

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-12

The first two dimension statements are reading two input values from the
parameterized tag names %param1%.out and %param2%.out.

The two inputs have two associated attributes for alarming called
AnyAlarm1 and AnyAlarm2. The following dimension statements are
reading these two values:

Dim AnyAlarm1 as intin(%param1%.Anyalarm)
Dim AnyAlarm2 as intin(%param2%.Anyalarm)

The script uses a Let statement to calculate an average for the two input
values, Input1 and Input2. The following dimension statement is used to
output the result of this calculation to a location in the Local Status Server
called %param1%_avg.out.

Dim Output as intout(%param1%_avg.out)

For example, if the group parameter 1 is set to FIC101, a point named
FIC101_avg with a member .out will be created. Another control, such as a
bar control, can use this output via the identifier FIC101_avg.out.

Finally, the script uses an If expression to test for an alarm state. The
expression states that if AnyAlarm1 or AnyAlarm2 enters a true state, then
let an output value, created in maxSCRIPT, called AnyAlarm equal 1. Using
a dimension statement, this value is then passed on to an output tag called
%param1%_avg.Anyalarm. This then activities a screen alarm indicator. See
the following dimension statement:

Dim AnyAlarm as intout(%param1%_avg.Anyalarm)

Example 2: Working with Text Strings
Use maxSCRIPT to call out text strings that are treated as constants. In this
script example, a group of similar displays use the same display title,
however, when one of these displays is accessed it needs to show a different
title, "Oil Elevation A Front Sequence." This is accomplished with the
following script.

Dimx TitleTxt1 as Strctlout(Title/TitleTxt1.text)
Dimx TitleTxt2 as Strctlout(Title/TitleTxt2.text)

Dim DP1 as Strin(%dp1%)

If dp1 = "OilSeqAF"
Let TitleTxt1 = "Oil Elevation A Front

Sequence"
Let TitleTxt2 = "Oil Elevation A Front

Sequence"
Endif

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-13

The script begins with two dimension statements that are writing to two
tagname.attribute locations in the Local Status Server called
Title/TitleTxt1.text and Title/TitleTxt1.text. Notice that the dimension
statement includes an x (dimx). This means the script assumes it is accessing
an existing variable, and does not need to create an object that is recreated
and deleted each time maxVUE is opened and closed.

A third dimension statement is reading a text string from any maxVUE
display file with the parameterized tag reference, dp1.

The script logic following the dimension statement states that if a display is
accessed called "OilSeqAF," let the display title be "Oil Elevation A Front
Sequence."

Example 3: Hiding a Button in a Pop-up Display
The following script was written for a pop-up display that is used for
multiple screen applications. The display interacts with multiple
maxSCRIPT controls at any given time, which dynamically change its
appearance based on the state of current inputs.

'---
'This script hides the State2 command and feedback
'button when Numstate = 2.
'---

' Configure Runtime Bitmap to hide MAXscript.ocx
Bitmap "c:\custom\displays\operating\common\bmp\S-
popback-1.bmp"

Dim Numstate as Intin(%dp1%.Numstate)

Dim Height_rectangle as
dblctlout(tank/State2rectangle.height)
Dim Height_button as dblctlout(tank/state2.height)

Dim Width_rectangle as
dblctlout(tank/State2rectangle.width)
Dim Width_button as dblctlout(tank/state2.width)

If Numstate = 2
let Width_rectangle = 0
let Width_button = 0
let height_rectangle = 0
let height_button = 0

endif

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-14

The pop-up as created contains three buttons that may be assigned different
functionality depending on the inputs the pop-up is currently referencing. In
certain specific instances, however, only two buttons are relevant to the
application that called the pop-up. The script shown here is designed to hide
the third button when an input indicates only two buttons are needed.

The script begins with several comment lines set off by the initial single
quote or apostrophe character. When the script is compiled, text strings that
follow a single quote are ignored. The comments summarize the purpose of
the script, which is to hide the Stated 2 command and feedback button when
an input called Numstate equals 2.

The script continues with a bitmap command that displays a pop-up display
file called S- popback-1.bmp.

The bitmap command is followed by five dimension statements. The first
dimension statement is reading the attribute Numstate that is associated with
a display identifier called dp1. See the following dimension statement:

Dim Numstate as Intin(%dp1%.Numstate)

The four other dimension statements define names to be used to write to the
size attributes of the State2 button. Note that the size attributes include a
rectangle that refers to the border surrounding the button.

Note: controls can be renamed using maxVUE Editor Layers button. Click
the Layers button, locate and select the control of interest, right-click and
select Rename from the menu and enter a new name. See discussion under
"Interacting with Other maxVUE Controls," in Chapter 3.

The logic that follows the dimension statements states that if Numstate reads
an input equaling 2 then write a zero to the size attributes of the button and
surrounding rectangle. This effectively makes the button and button border
disappear from the display when this script is in effect.

Note: when you select Test Mode in the maxVUE Editor, scripts can modify
the parameters of other unsaved controls, such as width, height, x or y, or
color. If you save the graphic after the script is run, these parameters changes
will be remembered. Be sure to save prior to testing to prevent this.

By using script this way, you create a single display that may be tailored for
multiple purposes, eliminating the need to create multiple displays designed
to anticipate very specific uses.

Exercise 4: Using Flashing Bitmaps
In addition to the Bitmap command, maxSCRIPT includes the fbitmap
command, which makes a bitmap image appear to flash repeatedly. The

 Creating maxSCRIPTs Using Simple Examples

Metso Automation MAX Controls • 277588 • 2-15

following script uses two flashing bitmaps to call attention to a device
depicted on a display when it enters an alarm state.

Dim DevState as Intin(%param1%./#1.DevState)
Dim Ovrd1 as Intin(%param1%./#1.Ovrd1)
Dim Ovrd0 as Intin(%param1%./#1.Ovrd0)

Dimx SelPt as Strout(_sel_pt.Tagname)

if (Ovrd1 = 1) and (DevState = 2)

Bitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
1.bmp"

fBitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
1fl.bmp"

elseif (Ovrd0 = 1) and (DevState = 1)

Bitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
2.bmp"

fBitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
2fl.bmp"

elseif DevState = 2

Bitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
1.bmp"

fBitmap ""

elseif DevState = 1

Bitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
2.bmp"

fBitmap ""

else
Bitmap "c:\custom\displays\operating\common\bmp\s-cb-a-

5.bmp"
fBitmap ""

endif

If mouseclick
Let mouseclick = 0
Let SelPt = "%param1%"

endif

If mousedclick
Let mousedclick = 0
let display = "popups\zpop-ct-dv2-o-s-c.mn dp1=%param1%"

endif

The script uses three dimension statements to define inputs for DevState,
Ovrd1, and Ovrd0. The logic that follows the dimension statements reads the
inputs for the above attribute values to determine which set of inputs makes
any of a series of if expressions true.

For instance if Ovrd1 = 1 and DevState = 2, then the script displays the
following two bitmaps using these path names:

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•2-16

"c:\custom\displays\operating\common\bmp\s-cb-a-
1.bmp"
"c:\custom\displays\operating\common\bmp\s-cb-a-
1fl.bmp"

The bitmap images are identical but use different shades of the color red.
The first bitmap uses a medium red and the second bitmap uses a dark red.
The first bitmap is called out using the Bitmap command, while the second
bitmap is called out using the fBitmap command. To create the illusion of a
single flashing image, the fBitmap command causes maxVUE in runtime
mode to display both bitmaps alternating in rapid succession.

Note that the script is written to display only one of two flashing bitmaps
when the proceeding if conditional logic is satisfied. The fBitmap command
is used in three other places in the script followed by a null text string as in
the following:

Bitmap "c:\custom\displays\operating\common\bmp\s-cb-a-
5.bmp"
fBitmap ""

When a script uses the fBitmap command, you must continue to use this
command in other places that call for a bitmap even when a flashing bitmap
is not desired. For instances where a flashing bitmap is not desired, use the
fBitmap "" script construct to nullify or cancel a flashing bitmap command.

Metso Automation MAX Controls • 277588 •

Chapter 3

maxSCRIPT Script Language
Reference Guide

 Overview
The maxSCRIPT OCX control uses a Basic-like script language, allowing
you to create maxVUE display applications using a more free-form
programming approach. The script language, developed by Metso
Automation MAX Controls, uses elements, such as dimension statements,
commands, variables, and logical expressions, providing you with a rich
coding language. All the elements you may currently include in your script
files are listed in this reference chapter. Each of the following sections
describes the script element and its general syntax, and shows you how the
element is typically incorporated in script using basic examples.

Using Dimension Statements
The following sections discuss the four basic uses of dimension statements
in maxSCRIPT. Generally, dimension statements are used to define names
that may be used to read and write data. Dimension statements may contain
specific point identifiers, however, in most cases it is more advantages to use
parameters instead. See "Using Parameterization," in chapter1.

Creating Local Variables
Local Variables can be created through dimension statements using the
following syntax:

Dim <alias> as <type>

Where:

<alias> any string that uniquely identifies this value in the rest of the script
<type> is from

dbl – double variable
int – integer variable
str – string variable (String characters such as a description, or tagname)

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-2

Note when you first create them, double variable (0.0), integer variable (0)
and string variable (“”) begin as null values. The following technique can be
used to do something on the first pass only:

Example

Dim f as int
If f = 0
 Let f = 1
 …..do something
endif

Creating Objects in the Local Status Server
Use dimension statements to create objects in the Local Status Server, from
which other controls can access information produced by maxSCRIPT.
These objects are automatically created and deleted as maxVUE screens are
called up. Use an Out type Dimension statement at the beginning of the
script to declare these objects. Because there may be multiple instances of
the same maxSCRIPT controls on a single graphic, names of output objects
must be unique.

Syntax for Dim statements

Dim <alias> as <type>(<service>.<extended member>)

Where:

<alias> any string that uniquely identifies this value in the rest of the script
<service> any valid SBP service name
<extended member> any valid SBP extension
<type> consist of the following in and out types:

In Types:

xxxIn types refer to an already existing variable, which is to be used in a
calculation.

dblIn – double in Double precision, floating point integer; typically a
variable used in a calculation.

intIn – integer in Integer variable
strIn – string in String characters such as a description or tagname

 Out Types:

xxxOut types create (and delete when the screen closes) an LSS object for
output (as well as input if necessary) so that other controls can access the
calculated results. A <service> is created for the purpose of housing outputs
in the Local Status Server. The same service can (and should) be used for
multiple members. The members can be of all different types.

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-3

DblOut – double out Double precision, floating point integer; an output to
be created so that controls can access calculated
results

IntOut – integer out Integer variable
StrOut – string out String characters such as a description or tagname

Examples:

dim xyz as dblOut(b.condou)
dim i12 as intOut(b.conint)
dim txt as strOut(b.contxt)

dim asaw as dblIn(saw.ao)
dim lss_service_count as intIn(_lss.numsvc)
dim now as strIn(_lss.time)

Caution: The statement

Dim A as strout(_sel_pt.tagname)

has the unfortunate effect of deleting the selected point object when the
script is terminated. It is up to the script writer not to use existing local status
variable names in an xxxOut dimension. Instead, use <Scriptname>.out or
something similar.

Performing Demand Writes Using Command Statements
In many situations, maxSCRIPT will need to write the same value multiple
times during a process. For these instances use a dimension statement that
incorporates a command, a type of transaction supported by DPU4E.

A command is an action that takes place upon a write from the software
backplane. Although commands are not readable, you might write the same
value each time (0, for example).

Syntax for Dim statements:

Dim <alias> as <type>(<service>.<extended member>)

Where:

<alias> any string that uniquely identifies this value in the rest of the script
<service> any valid SBP service name
<extended member> any valid SBP extension
<type> consist of the following out type:

IntCmdOut Integer variable output
sCmdOut String variable output

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-4

Example

dim gotoman as intcmdout(%param1%.opcmdman)
if mouseclick

let gotoman = 0
endif

Without the use of the command statement, maxSCRIPT only writes the
value once, assuming nothing has changed since the last write. The
command statement, in effect, forces a demand write. maxSCRIPT will
perform the write regardless of what was written to this command the last
time, and it will not subscribe to the command to update current values.

Note that the maxSCRIPT variable Display (See Table 1-1 above) uses the
sCmdOut command statement on behalf of the user.

Note that normal outputs DO subscribe to values and can be used as inputs.

Example:

dim a as intout(test.out)
if a = 5

let a = 0
endif

Note that a can be read and written by the script.

Performing External Writes
When accessing an existing object (such as _sel_pt) as an output, write the
dimension statement as dimx.

dimx s as strout(_sel_pt.tagname)

When out types are used with the dimx command, an existing variable is
assumed (and not created or deleted).

Use dimx to write to existing software backplane service members, such as
DPU point (service) attributes (members) and LSS service members.

The function of the x is to prevent script from creating an _lss variable of the
name (<external name>.<external attribute>), which is deleted when the
script is terminated.

Dimx is only functional for:

dimx <name> intout(<external name>.<external
attribute>)
dimx <name> dblout(<external name>.<external
attribute>)

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-5

dimx <name> strout(<external name>.<external
attribute>)

Should you write a dimx statement for xxxIn types, the script will perform
like a dim statement without the x. The x is ignored for inputs.

dimx <name> intin(<external name>.<external
attribute>)
dimx <name> dblin(<external name>.<external
attribute>)
dimx <name> strin(<external name>.<external
attribute>)

Caution: because there is potential for security bypass or inadvertent
operation, you must exercise great caution when you use the dimx script
instruction.

Syntax

Dimx <alias> as <type>(<service>.<extended member>)

Where:

<alias> any string that uniquely identifies this value in the rest of the script
<service> any valid SBP service name
<extended member> any valid SBP extension
<type> is intout, dblout or strout

Example

Dimx selpt as strout(_sel_pt.tagname)
let selpt = “fic101”

Subscribing to Keyboard Groups Using _Keyboard.respool
Use a dimension statement containing Dimx to access _keyboard, a Local
Status Server (LSS) member service. This object is used in script to permit
applications, such as displays containing buttons, to respond to keystrokes
from the operator keyboard.

The service, _keyboard, is used to buffer keystrokes from the operator
keyboard. A subscription to the keyboard takes the form:

Subscribe _KEYBOARD.BUFFER.<MASK>

Where <MASK> indicates the desired key clusters, represented by a single
letter:

M - ode
D - isplay
P- an
C - ursor

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-6

Z - oom
U - ser
L -ogic
S - etpoint
O - utput
A –alarm

For example:

Subscribe _KEYBOARD.BUFFER.MDP to subscribe to mode, display and
pan key clusters.

An application can subscribe to a group of keys. Only the last subscriber to a
group of keys gets notified that the key has been pressed. The respool
function of _keyboard:

_keyboard.respool

allows an application to throw back any keys that it is not interested in.

In dimension statements containing respool, use dimx as part of the
statement since the script is not creating the _keyboard.respool variable. It is
built into lss.

Use intcmdout in dimension statements performing writes to
_keyboard.respool. This is a dim type that does not subscribe to
_keyboard.respool. Note that you cannot use respool in a read mode – if
(respool = 4) doesn’t make sense.

Intcmdout has a second feature. Since it does not subscribe to a value, it will
write the same value over and over again. The normal dimx output point will
not write unless a value is different from the last value received from a point.

The following is an example maxSCRIPT that intercepts a group of keys:

Rem subscribe to the user keys ‘u’
Dim key as intin(_keyboard.buffer.u)

If (key = 115)
Rem do f4 special processing

Endif

The dimension statement in the previous example is subscribing to the user
function keys:

_keyboard.buffer.u

Unfortunately, this fragment has the side effect of intercepting all of the
User function keys. If this script is not capable of handling all of the keys it
has to put them back for the next subscriber. This is resolved in the next
example containing the Dimx respool statement.

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-7

Rem subscribe to the user keys ‘u’
Dim key as intin(_keyboard.buffer.u)
Dimx respool as intcmdout(_keyboard.respool)

If (key = 115)
Rem do f4 special processing

Else
Let respool = key

Endif

Finding Keycodes

Notice that the script in the preceding example references a specific function
key by its number code, 115. The following script can be used to find
keycodes:

Dim key as intin(_keyboard.buffer.ncpdzumlsoai)
Dim out as intout(test.out)

Let out = key

Put this script on a graphic, with a single point displaying the integer at
test.out, and you will see keys as they are pressed. Notice that a key is
always followed by a zero around one second after the key has been pressed.

Interacting with Other maxVUE Controls
You may use dimension statements that allow a maxSCRIPT control to
interact with other maxVUE controls, such as the Bar Control, List Control,
and so forth.

Your script should include one of the following out types

Dblctlout; double integer out to
control

Double precision, floating point integer
an output to be created so that controls
can access calculated results.

Intctlout: Integer out to control Integer value

Strctlout; string value out to
control

String characters such as a description,
or tagname

To interact with other controls on a given maxVUE display, use the
following syntax:

Dim <name> as <xxx>ctlout(<object name>.<parameter>)

Where:

<name> is the alias for this parameter within maxSCRIPT

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-8

<xxx> is replaced by Dbl, Int or Str; note that the out types include the
characters ctl, indicating the script will interact with other controls. For
example, Dblctlout.
<object name> is the name of the object as seen and set in the Layers button
of the maxVUE Editor
<parameter> is from the list:
 x - the x position

y - the y position
width - the width of the object
height - the height of the object
color - the color of the object
linecolor - the linecolor of the object

Example:

Dim x as intctlout(object.x)
Dim y as intctlout(object.y)
Let y = 10

Note: when you select Test Mode in the maxVUE Editor, scripts can modify
the parameters of other unsaved controls, such as width, height, x or y, or
color. Be sure to save any unsaved controls prior to testing to prevent this.

Color is best represented by a dbl value. The dbl value should be calculated
as:

Dim objcolor as dblctlout(object.color)
Dim color as dbl
Dim red as int
Dim green as int
Dim blue as int
Let red = … ;number from 0 to 255
Let green = … ;number from 0 to 255
…

Let color = RGB (red, green, blue)

Let objcolor = color

When creating a maxVUE group with a script interacting with another
control using this syntax:

intctlout(<controlname>.<attribute>)
dblctlout(<controlname>.<attribute>)
strctlout(<controlname>.<attribute>)

you need to know the name of the target control, which may be any available
maxVUE control, such as a Button Control, Box, and so forth).

To give a control a name:

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-9

1. Click the Layers Button to display the Edit Layers and Control Order
pop-up of the selected file.

2. When you access the Edit Layers and Control Order pop-up, display
objects appear in Folders, organized in a tree structure.

3. To change the default name to any name of your choosing, select the
object and right-click to bring up a pop-up menu. Click Rename from
the menu and enter a new name.

All Group Folders (except the root) may be renamed. The individual drawing
items within a Folder may also be rename. It IS OK that the names are not
unique when a group is copied and pasted. This function will first search for
a control within the group with <controlname>. It will then look at the next
level of grouping and so forth.

Using maxSCRIPT Commands
maxSCRIPT uses the following commands:

• Let
• If, else, etc
• Bitmap/fbitmap
• Play
• ToolTip
• Run

Using Let X = Y Expressions
Expressions beginning with Let use the following syntax:

Let <service>.<extended member> = <expression>

Where:

<expression> is any valid arithmetic or logical expression containing the
following:

<service>.<extended member> Previously declared as a dblIn, intIn, or strIn
<constant> Numerical or string constants
+ - / * Arithmetic operators. Note + also stands for string

concatenation
() Parenthesis
and or not bitand bitor Logical operators for logic expression
> < = Relational operators and combinations

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-10

Example:

let xyz = 4.5432 * asaw
let txt = "testing at " + now

Bitand and bitor are used to AND or OR two operators together to produce
either a zero or non-zero result. Typically, one of the operators will be an
integer constant whose decimal equivalent is one or more bits set, while the
other is a multi-bit integer which is to be tested for the state of a bit buried
within the integer.

Example of use of bitand (example taken from the popup used for the Digital
Input Buffer); the goal of the code is to animate individual bits of a word;
thus, through parameters, this code is called 16 times in the Detail Popup.

Bitmap = "C:\mcs\displays\common\bmp\backgray.bmp"

Dim bn as Int
Dim bit as Int
Dim word as intin(%param1%.%param3%)
Dim start as intin(%param1%.BIT_NUM)
Dim bits as intin(%param1%.FIELD_SZ)
Let bn = %param2%

Dim BitOut as Intout(%param1%%Param2%_Bit.Out)

Let bit = 1 bitand word

If (bn < start) or (bn > ((start + bits) - 1))
If bit

Let BitOut = 3
Else

Let BitOut = 2
Endif

Else
If bit

Let BitOut = 1
Else

Let BitOut = 0
Endif

Endif

Using If, Else, Else If, EndIf Expressions
Expressions using If, Else statements use the following syntax:

If <expression>
Else
ElseIf <expression> (Note one word)
Endif

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-11

Where:

<expression> is any numerical expression that can be checked against zero.

Example

if asaw > 50.
 let txt = "saw gt 50"
else
 let txt= "saw lt 50"
endif
if (xyz > 3.0) and (txt = “on”)

Using the Bitmap Command
The maxSCRIPT control lets you display bitmaps using the Bitmap
command. Access the control property page called Default to define a file,
such as a bitmap that you want to appear in the maxSCRIPT window by
default to replace the standard maxSCRIPT icon.

When you create the control in the maxVUE Editor, you may scale the
window to any size including full screen. The bitmap assumes the size of the
control window.

You can control how and when a bitmap or multiple bitmaps appear in run
mode using the bitmap instruction by itself or with additional script logic:

Bitmap “<expression>”

Where

<expression> is the file path and name to the desired bitmap.

Dim f as int
If f = 0
 Let f = 1
 Bitmap “c:\winnt\winnt.bmp”
Endif

You can calculate a bitmap via an expression:

Dim str as strin(bmp.name)
Bitmap “c:\custom\displays\operating\bitmaps\” +
str

Using Flashing Bitmap Command
To cause a flashing bitmap, use the fbitmap option. This will cause a
continuous switch between the normal bitmap (the last bitmap specified) and
a second bitmap on a half second basis.

bitmap "C:\winnt\winnt.bmp"
fbitmap "C:\winnt\winnt256.bmp"

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-12

You reset the flash by setting fbitmap to ""

fbitmap ""

You can reset the name of the normal bitmap and flashing bitmap at anytime.

Using the Play Command
Use the play command to call out a sound file. In the following example the
wave file called out by the play command produces a sound.

play "c:\winnt\media\start.wav"

Using the ToolTip Command
Use the ToolTip command to add a ToolTip window to a maxSCRIPT
control. The ToolTip may contain a text message that describes the control
to an end user. The ToolTip appears when a user rests a mouse cursor over
the control. To activate the feature and copy a text message to the ToolTip
window, use this syntax:

Tooltip "<Text string>"

To create a ToolTip that displays the last error message for the maxSCRIPT
control, combine the ToolTip command with the Error variable. See "Using
the Error Variable," in the following section.

Using the Run Command
Use the run command to run a program. In the following example the Report
Control Program is run when the maxSCRIPT control is clicked.

If MouseClick
 Let MouseClick = 0
 Run "c:\Mcs\Report\ReportControlPanel.exe,Reports Control Panel"
Endif

The Run Command is followed by a comma-delimited string of two parts.
The first part is the full pathname of the program to be run. The second part
is the program’s associated Window Title. The two parts are separated by a
comma. When attempting to run the program, maxSCRIPT first checks to
see if it is already running by matching the Window Title in the Run
Command with Window Titles of running processes. If not found, it will run
the program. If it finds it, the program will be brought to the forefront of the
desktop. For this reason, it is extremely important that the correct Window
Title be used with the Run Command. To determine the correct Window
Title, double click on the program and then wave your cursor over its Icon
on the Task Bar.

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-13

The Window Title may include the wild card character (*) to match multiple
characters, or the position wild card character (?) to match any character in a
position:

If MouseClick
 Let MouseClick = 0
 Run "C:\Winnt\System32\mspaint.exe,*paint"
Endif

Using Special Variables
maxSCRIPT uses three special variables:

• Display
• Mouseclick, Mousedclick, Mouserclick
• Error

Using the Display Variable
Use the Display variable to request a popup or display change:

Let display = “main\main.mn”

Using the Mouse Clicks Variable
Use the following mouseclick variables to create an object that responds to
mouse clicks:

Mouseclick: processes left click over this control

Mouserclick: processes right click over this control

Mousedclick: Processes double click over this control

If mouseclick = 1
Let mouseclick = 0 ;need to reset it
……

Endif

Using the Error Variable
The variable error contains the last script error. For example,

tooltip error

will copy the last error to ToolTip. Error can be set by applications
software:

let error = "broken"
or
let error = ""

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-14

Error will remain set until a new error occurs.

Using Variables Mouserow/ Mousecol to Locate Mouse Cursor
Use the variables Mouserow/Mousecol in a maxSCRIPT to determine the
location of the mouse cursor.

Note the units of row and col are percent of the graphic and can be placed
into x and y directly.

See the following example.

Mouse row and column are only calibrated in runtime.

Example:

rem mouse row and col demonstration script
dim drow as dblout(test.drow)
dim dcol as dblout(test.dcol)
dim time as strin(_lss.time)
dim s as str
rem circ is a circle object that has been rename
circle
rem it is an example of moving an object to follow
the cursor
dim row as dblctlout(circ.x)
dim col as dblctlout(circ.y)
if mouseclick
 let s = "The time is " + time
 let s = s + ",Clock"
 let mouseclick = 0
endif

let s = "col=" + mousecol + " row=" + mouserow
let row = mouserow
let col = mousecol
let drow = mouserow
let dcol = mousecol
tooltip s

Using Special Functions
maxSCRIPT uses the following special functions:

• ABS; Absolute Value
• ASC or CHR; convert number to ASCII character
• ASK; present the user with a message popup
• AVI; specify and display frames
• EXP; expand parameters in real time

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-15

• NOT; Logical Negation
• OBJMAP; perform lookup in typemap database
• P_CONTROL; perform lookup of the name of a control popup display
• P_DETAIL; perform lookup of the name of a detail popup display
• QUA; check variable quality
• RGB; calculate a color
• SendMsg; send a message to another window
• SVC; select a service
• TRANS; enable dual language translator
• VAL; convert ASCII string to double

Refer to the following for examples of each function.

Using the Absolute Value Function
ABS – Absolute Value

Use the following syntax:

ABS(Expression)

Example:
Dim dev as dbl
Dim pv as dblin(tagname.pv)
Dim sp as dblin(tagname.lsp)
Let dev = abs(pv-sp)

Using the ASCII Character Function
Use the asc function to convert a number into an ASCII character. “chr” is
accepted by maxSCRIPT as a synonym for “asc”.

Example:

dim i as intout(script.int)
dim s as string
let s = "The " + asc(i) + "time"

Note there are no errors. Asc will truncate all numbers from 0 to 255 without
raising an error.

Example:

asc(256 + 35)= '#'

Using the ASK Function

The ASK function places a message popup in front of the operator so that
the operator can make a decision. The operator must always answer the
message popup.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-16

ASK supports three different popup types:

Yesno: the operator will be asked yes or no to answer a question. The result
will be 1 if the operator clicks on Yes, or 0 if the operator clicks on No.

Input: the operator will be asked to enter a string variable, which will then
be placed in the result.

Alert: the operator will merely have to acknowledge the popup; no result
will be returned.

The result, if any, will be returned in the special variable askvalue.

The ASK function is invoked in the following manner:

Ask “<text message>|<popup caption>|<popup type>”

Where

<text message> would be replaced by the actual text message to be conveyed
to the operator, such as Enter Tag:

<popup caption> would be replaced by the title of the message box, such as
Add Trend Point

<popup type> would be either yesno or input or alert

Here is an example, taken from ControlPopup.mxs, showing one use of the
ASK function:

dim s as strin(_sel_pt.tagname)
dim d as str
if mouseclick
 let mouseclick = 0
 if s <> ""
 let d = p_control(s)
 if d <> ""
 let d = d + " dp1=" + s
 let display = d
 else
 ask "Selected Point Not Recognized|No Control popup|alert"
 endif
 endif
endif
tooltip "Click to call up a Point Control popup for the selected
point. Note - You must Select a point first."

In this example, the code generates an alert-type message box, with text
message Selected Point Not Recognized, and with title No Control popup, if
the p_control function does not return a display name.

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-17

Here is another example. Using this fragment, an operator can, using ASK,
call up a trend, and then enter a tagname and an attribute to be trended. An
alternative method to calling up the Trend Attributes popup.

Ask “Enter Tag:|Add Trend Point|input”
if askvalue <> “”
 Let Pen1t = askvalue
 Ask “Enter Attribute:|Add Trend Attribute|input”
 Let Pen1a = askvalue
 Let PointId = Pen1t + “.” + Pen1a + “.sample”
endif

Using the AVI Function
Use AVI function to select a specific frame and display it. It is not intended
to play movies; use the time-state control for that. A typical AVI application
would be an oddly shaped tank being filled. You might create 100 frames
showing various states of the tank. You can then select one of the frames. An
alternate bitmap approach, using 100 if statements, would be too
cumbersome.

Before using an AVI it must be loaded. In the following example, this script
is used to load an AVI called clock:

dim first as int
if not first
let first = 1
avild "clock.avi"
endif

Use the following syntax to display a frame:

avi <frame>

Where <frame> is an integer expression representing the frame number.

Frame Rate

The frame rate for new frames is 1/2 second. For example, the following
code will display the frames 1,2,3,5,7 in sequence at a rate of 1/2 second.

if gonow
let gonow = 0
avi 1
avi 2
avi 3
avi 5
avi 7
endif

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-18

Using the Expand Function
The Expand function performs a real-time expansion of parameters.

Example:

dim sin as strout(junk.in)
dim sout as strout(junk.out)
let sout = exp(sin)

Put a list control with two entries (writes on junk.in) and you can type in a
string (%param1%.%dp1%) and see what it gets expanded to.

Expansion can be used to perform an ad-hoc read via maxSCRIPT. In the
following, a tag and attribute are computed depending on an input variable.
The read is then executed via the expand function.

Dim s as str
dim d as dbl
Dim i as intin(test.in)
let s = "%%"
if i = 0
let s = s + "fic101"
elseif i = 1
let s = s + "lic101"
endif
let s = s + ".pv%%"
let d = exp(s)

Note the double parenthesis characters (%%) are used because lines of script
are pre-expanded prior to compilation. %% expands to a %.

Using the Logical Negation Function
NOT – Logical Negation – logical signals are either zero (0) – false or non-
zero – true. The not operator will convert a zero to a 1, and a non-zero to a 0.

Use the following syntax:

NOT (Expression)

Example:

if not (a = b)

Using the Objmap Function to Access the TypeMap
Use the Objmap function to look up the mapping of an object type (such as
PID, SUMMER etc.) to find its appropriate point detail and point data
popup.

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-19

The function references a database file listing all known object types and
their associated point detail and point data pop-up displays by specific file
name. All objects in systems from MAX1 through maxDNA have an object
type such as PID, SUMMER etc. This file is located in:

C:\custom\displays\operating\database\typemap.mdb

The database file table consists of the following columns, which can be
filled in:

PointDataPopup
PointDetailPopup
PointControlPopup
UserDefined1
UserDefined2
UserDefined3
UserDefined4
Help

Note: The only ones in service for maxDNA are PointDataPopup and
PointDetailPopup.

The objmap function uses the following syntax:

Objmap(<object map string>)

Where

<object map string> = <objtype> | <column name>
<object> = <pointid>.objtype
<column name> is from the above list of columns.

Example

Following is a fragment of a program to call up the PointDataPopup of the
selected point.

dim obj as strin(_sel_pt.route.objtype)
dim s as str
if mouseclick
 let mouseclick = 0
 let s = obj + "|PointDataPopup"
 display objmap(s)
endif

Note that the temporary string ‘s’ is used to compute the string consisting of
the object type and the column to be accessed separated by the vertical bar.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-20

Objmap will return an error message in the string should an object type not
be found, or the column name not be found. In addition, you can test the
quality of an Objmap function to determine if the lookup is successful:

Example

If qua(objmap(“%_sel_pt.forward.objtype%” +
“|PointDataPopup”)

…
endif

Note that the above makes use of parameter substitution to read
“_sel_pt.forward.objtype”.

Using the P_CONTROL and P_DETAIL Functions
These functions return the name of a point control or point detail popup
display, given a point tagname as input.

For DBM-based points, the TypeMap.mdb database file is searched for the
name of a popup, which will typically come from either
C:\Mcs\Displays\Mn\PointData folders, or C:\Mcs\Displays\Mn\PointDetail
folders (but, of course, it is possible for you to create a modified set of
displays in the Custom path, after modifying the TypeMap.mdb file).

For DPU4E-based points, the Point Control popups will typically come from
C:\Mcs\Displays\Popups\dpmsxxx folders (where xxxx is the name of an
atomic block), while the Point Detail popups will typically be the
PtDetailsTabular.mn display (looks like the Point Browser), although you
could create custom Control or Detail popups which would be stored in the
C:\Custom\Displays\Operating\Popups path.

For DPU4E-based atomic blocks, the display names are always going to be
stored in a folder C:\Custom\Displays\Operating\Popups\<objname>, with
file name either <objname>-control.mn or <objname>-detail.mn. For
example:

The MAMC-supplied Point Control popup for the Atag atomic block is:

C:\Mcs\Displays\Mn\Popups\dpmsATAG\dpmsATAG-control.mn.

If you had created a custom version, it would be:

C:\Custom\Displays\Operating\Popups\dpmsATAG\dpmsATAG-control.mn.

These path and file names are the template for what you would use if you
had created your own DPU4E Custom Function Blocks, and wanted to
provide them with either a Control or Detail popup.

Here is an example of the use of the P_CONTROL function:

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-21

dim s as strin(_sel_pt.tagname)
dim d as str

if mouseclick
 let mouseclick = 0
 if s <> ""
 let d = p_control(s)
 if d <> ""
 let d = d + " dp1=" + s
 let display = d
 else
 ask "Selected Point Not Recognized|No Control popup|alert"
 endif
 endif
endif
tooltip "Click to call up a Point Control popup for the selected
point. Note - You must Select a point first."

The variable s contains the tagname of the selected point. The variable d
contains the path and name of the popup found by p_control.

Using the QUA Function
maxSCRIPT (Release 1.6.5 or later) includes enhancements to ensure data
quality using the Qua function. maxSCRIPT versions released before
Release 1.6.5 may execute with some unexpected consequences.

Example:

dim s1 as strin(input1.tagname)
dim s2 as strin(input2.tagname)
dim same as int
if s1 = s2
let same = 1
endif

In maxSCRIPT releases prior to Release 1.6.5, s1 and s2 are initialized to
blank, and subscriptions are issued to update these variables as they change.
The if statement will most often be true, (blank = blank), the very first time it
executes.

In post Release 1.6.5 maxSCRIPT, s1 and s2 are initialized to Bogus (bad).
The if statement first makes the calculation:

s1 = s2

If any variable in a calculation is bad (timed out, tag not found, data not
available yet) the result is zero or false. So the above program will work.
There are still situations where it would not as in the following example:

if (s1 <> s2)
same = 0
else
same = 1
endif

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-22

To be absolutely sure the data is good incorporate the Qua function in scripts
as shown in the following example:

dim s1 as strin(input1.tagname)
dim s2 as strin(input2.tagname)
dim same as int
if qua(s1 = s2)
if s1 = s2
let same = 1
endif
endif

Note: the Qua function is performed on the result of the calculation s1 = s2.
The result is thrown away.

Caution: some scripts that used to operate under Release 1.6.4 may operate
differently under Release 1.6.5 due to the introduction of quality. In the first
example, your program may depend on falling through the comparison (even
though it is an error to do so)!

Using the RGB Function
The RGB command calculates a double precision integer representing a
color.

Use the following syntax:

RGB ("r,g,b")

Example:

dim c as dblctlout(box.color)
let c = rgb "255,0,128"

The following example sets a full red, no green and half-blue intensity. RGB
returns a double and can be stored in any dbl variable.

Example:

dim c as dblctlout(box.color)
dim d as dbl
let d = rgb "255,0,128"
let c = d

You may use the RGB function with the color and linecolor attributes of a
control using this syntax:

dim co as dblctlout(<object name>.color)
Let co = RGB (128, 25, 174)

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-23

Using the SendMsg Function
This is a system function that can be used to broadcast a message to another
window. You should not use this function if you don’t know what that
means. It is primarily used to popup the point picker. The following
example will popup the point picker on a mouseclick. The function was
generalized as it may have other applications.

The following script should popup the point picker on a mouse click:

If mouseclick
 Let mouseclick = 0
 SendMsg “Point Picker WakeUp”
Endif

Using the Service Function
Use the SVC function to pick a service out of a full point identifier

Use the following syntax:

SVC ("service.member")

Example:

let str = svc(“fic101.pv”) ; str gets “fic101”

Using the TRANS Function
Use the TRANS function to run a string through the dual language translator.
Note you will need to be careful with fonts in displaying junk.out.

dim sin as strout(junk.in)
dim sout as strout(junk.out)
let sout = trans(sin)

Using the Value Function
Use the val function to convert an ASCII string into a double precision
integer.

Example:

dim i as int
dim s as strout(script.txt)
let i = val(s) 'convert an input string into a number

Note there are no errors reported. Val will convert as many characters as are
appropriate and stop without error in any case.

maxSCRIPT User's Guide

Metso Automation MAX Controls • 277588•3-24

Example:

val("123.4hi there") = 123.4
val("hi there123.4") = 0.0

Creating Unique Output Names
When creating external variables with an output dimension, use a method to
create a unique output name to prevent interference among different
instances of maxSCRIPT. The following will result in a unique name for the
service to contain output variables:

Dim out as dblOut(%param1%_scr.out)

Note that the “_scr” addition to one of the driving tagnames creates a
somewhat unique place in which to store the output of the script.

Changing maxSCRIPT Execution Time
maxSCRIPT subscribes to its data and will ONLY execute lines when there
is a data update (or subscription timeout) to any of the values that are
dimensioned as inputs or outputs. If you wish a more regular execution for
some reason, simply use a dimension statement for a string input pointing to
_lss.time that will update each second.

Dim dummy as strin(_lss.time)
Dim intout as intout(test.int)
Dim I as int
Let I = I + 1
Let out = I

Without the declaration of dummy, the above script will only execute when
the out subscription times out..

Annotating Script with Comment Text
To annotate maxSCRIPT with free form comments, notes, special
instructions, and so forth, begin each comment line with any of the
following:

Rem
; Semicolon character
' apostrophe character

 Customer Drawing Set

Metso Automation MAX Controls • 277588 • 3-25

When maxSCRIPT is executed, any text beginning with the above characters
is ignored.

	maxSCRIPT Script Language Programmer's Reference and User's Guide
	277588 Rev. B
	Preface
	How This Book Is Organized
	Audience
	Using Online Help
	Using Online Help
	Using Other Programming Facilities

	Chapter 1
	Introduction
	Overview
	Creating a Display Containing Script
	Creating Script Files

	Developing Script Using maxSCRIPT
	Using Dimension Statements
	Using Local Variables
	Reading and Writing from the Software Backplane
	Performing External Writes
	Interacting with Other maxVUE Controls

	Writing Script Logic
	Table 1-1. maxSCRIPT Commands, Variables, and Functions
	Using Let and If, Else Commands
	Using the Bitmap Command
	Using Functions
	Using Special Variables

	Placing Scripts in Groups
	Making Scripts Portable Using Parameterization
	Specifying a Percent (%) Character

	Putting It All Together
	Reviewing maxSCRIPT Error Messages
	Writes to Constants Are Prevented

	Using the maxSCRIPT Editor
	Creating New Files and Projects
	Working with Projects
	Renaming the Project
	Adding Files
	Renaming Files

	Editing Files
	Enabling Standard Editor Options
	Using Auto Complete
	Using Line Numbering
	Using Line Highlighting
	Using Syntax Highlighting

	Formatting Files
	Commenting and Uncommenting Text
	Indenting and Outdenting Text
	Toggling between Upper and Lower Case

	Chapter 2
	Creating maxSCRIPTs Using Simple Examples
	Getting Started
	Creating Points to be used in the Following Exercises

	Creating and placing a maxSCRIPT Control
	Exercise 1: Creating a Three-State Valve Condition Using Script
	Testing Exercise 1 in Runtime Mode

	Exercise 2: Creating a maxSCRIPT Control Using Parameters
	Testing Exercise 2 in Runtime Mode

	Exercise 3: Creating a Navigation Button Using Script
	Testing Exercise 3 in Runtime Mode

	Studying maxSCRIPT Examples
	Example 1: Calculate an Average, Trigger an Alarm Indicator
	Example 2: Working with Text Strings
	Example 3: Hiding a Button in a Pop-up Display
	Exercise 4: Using Flashing Bitmaps

	Chapter 3
	maxSCRIPT Script Language Reference Guide
	Overview
	Using Dimension Statements
	Creating Local Variables
	Creating Objects in the Local Status Server
	Performing Demand Writes Using Command Statements
	Performing External Writes
	Subscribing to Keyboard Groups Using _Keyboard.respool
	Interacting with Other maxVUE Controls

	Using maxSCRIPT Commands
	Using Let X = Y Expressions
	Using If, Else, Else If, EndIf Expressions
	Using the Bitmap Command
	Using Flashing Bitmap Command
	Using the Play Command
	Using the ToolTip Command
	Using the Run Command

	Using Special Variables
	Using the Display Variable
	Using the Mouse Clicks Variable
	Using the Error Variable
	Using Variables Mouserow/ Mousecol to Locate Mouse Cursor

	Using Special Functions
	Using the Absolute Value Function
	Using the ASCII Character Function
	Using the ASK Function
	Using the AVI Function
	Frame Rate

	Using the Expand Function
	Using the Logical Negation Function
	Using the Objmap Function to Access the TypeMap
	Using the P_CONTROL and P_DETAIL Functions
	Using the QUA Function
	Using the RGB Function
	Using the SendMsg Function
	Using the Service Function
	Using the TRANS Function
	Using the Value Function

	Creating Unique Output Names
	Changing maxSCRIPT Execution Time
	Annotating Script with Comment Text

